ﻻ يوجد ملخص باللغة العربية
This White Paper to the National Academy of Sciences Astro2010 Decadal Review Committee highlights cross-disciplinary science opportunities over the next decade with cold brown dwarfs, sources defined here as having photospheric temperatures less than ~1000 K.
It is estimated that ~60% of all stars (including brown dwarfs) have masses below 0.2Msun. Currently, there is no consensus on how these objects form. I will briefly review the four main theories for the formation of low-mass objects: turbulent fragm
The recently discovered brown dwarf WISE 0855 presents our first opportunity to directly study an object outside the Solar System that is nearly as cold as our own gas giant planets. However the traditional methodology for characterizing brown dwarfs
We use the new minimum spanning tree (MST) method to look for mass segregation in the Taurus association. The method computes the ratio of MST lengths of any chosen subset of objects, including the most massive stars and brown dwarfs, to the MST leng
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to
We use the kinematics of $sim200,000$ giant stars that lie within $sim 1.5$ kpc of the plane to measure the vertical profile of mass density near the Sun. We find that the dark mass contained within the isodensity surface of the dark halo that passes