ﻻ يوجد ملخص باللغة العربية
Stars that pass within the Roche radius of a supermassive black hole will be tidally disrupted, yielding a sudden injection of gas close to the black hole horizon which produces an electromagnetic flare. A few dozen of these flares have been discovered in recent years, but current observations provide poor constraints on the bolometric luminosity and total accreted mass of these events. Using images from the Wide-field Infrared Survey Explorer (WISE), we have discovered transient 3.4 micron emission from several previously known tidal disruption flares. The observations can be explained by dust heated to its sublimation temperature due to the intense radiation of the tidal flare. From the break in the infrared light curve we infer that this hot dust is located ~0.1 pc from the supermassive black hole. Since the dust has been heated by absorbing UV and (potentially) soft X-ray photons of the flare, the reprocessing light curve yields an estimate of the bolometric flare luminosity. For the flare PTF-09ge, we infer that the most likely value of the luminosity integrated over frequencies at which dust can absorb photons is $8times 10^{44}$ erg/s, with a factor of 3 uncertainty due to the unknown temperature of the dust. This bolometric luminosity is a factor ~10 larger than the observed black body luminosity. Our work is the first to probe dust in the nuclei of non-active galaxies on sub-parsec scales. The observed infrared luminosity implies a covering factor ~1% for the nuclear dust in the host galaxies.
Optical transient surveys have led to the discovery of dozens of stellar tidal disruption events (TDEs) by massive black hole in the centers of galaxies. Despite extensive searches, X-ray follow-up observations have produced no or only weak X-ray det
Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries o
Many decades of observations of active galactic nuclei and X-ray binaries have shown that relativistic jets are ubiquitous when compact objects accrete. One could therefore anticipate the launch of a jet after a star is disrupted and accreted by a ma
Tidal disruption events occur rarely in any individual galaxy. Over the last decade, however, time-domain surveys have begun to accumulate statistical samples of these flares. What dynamical processes are responsible for feeding stars to supermassive
Supermassive black hole binaries (SMBHBs) are products of galaxy mergers, and are important in testing Lambda cold dark matter cosmology and locating gravitational-wave-radiation sources. A unique electromagnetic signature of SMBHBs in galactic nucle