ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniformly accurate time-splitting methods for the semiclassical Schrodinger equation Part 1 : Construction of the schemes and simulations

145   0   0.0 ( 0 )
 نشر من قبل Loic Le Treust
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article is devoted to the construction of new numerical methods for the semiclassical Schrodinger equation. A phase-amplitude reformulation of the equation is described where the Planck constant epsilon is not a singular parameter. This allows to build splitting schemes whose accuracy is spectral in space, of up to fourth order in time, and independent of epsilon before the caustics. The second-order method additionally preserves the L^2-norm of the solution just as the exact flow does. In this first part of the paper, we introduce the basic splitting scheme in the nonlinear case, reveal our strategy for constructing higher-order methods, and illustrate their properties with simulations. In the second part, we shall prove a uniform convergence result for the first-order splitting scheme applied to the linear Schrodinger equation with a potential.



قيم البحث

اقرأ أيضاً

This article is devoted to the construction of numerical methods which remain insensitive to the smallness of the semiclassical parameter for the linear Schr{o}dinger equation in the semiclassical limit. We specifically analyse the convergence behavi or of the first-order splitting. Our main result is a proof of uniform accuracy. We illustrate the properties of our methods with simulations.
98 - Yuya Suzuki , Dirk Nuyens 2019
In this paper, we propose a numerical method to approximate the solution of the time-dependent Schrodinger equation with periodic boundary condition in a high-dimensional setting. We discretize space by using the Fourier pseudo-spectral method on ran k-$1$ lattice points, and then discretize time by using a higher-order exponential operator splitting method. In this scheme the convergence rate of the time discretization depends on properties of the spatial discretization. We prove that the proposed method, using rank-$1$ lattice points in space, allows to obtain higher-order time convergence, and, additionally, that the necessary condition on the space discretization can be independent of the problem dimension $d$. We illustrate our method by numerical results from 2 to 8 dimensions which show that such higher-order convergence can really be obtained in practice.
369 - Remi Carles 2009
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t he nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.
We approximate the solution for the time dependent Schrodinger equation (TDSE) in two steps. We first use a pseudo-spectral collocation method that uses samples of functions on rank-1 or rank-r lattice points with unitary Fourier transforms. We then get a system of ordinary differential equations in time, which we solve approximately by stepping in time using the Strang splitting method. We prove that the numerical scheme proposed converges quadratically with respect to the time step size, given that the potential is in a Korobov space with the smoothness parameter greater than $9/2$. Particularly, we prove that the required degree of smoothness is independent of the dimension of the problem. We demonstrate our new method by comparing with results using sparse grids from [12], with several numerical examples showing large advantage for our new method and pushing the examples to higher dimensionality. The proposed method has two distinctive features from a numerical perspective: (i) numerical results show the error convergence of time discretization is consistent even for higher-dimensional problems; (ii) by using the rank-$1$ lattice points, the solution can be efficiently computed (and further time stepped) using only $1$-dimensional Fast Fourier Transforms.
We introduce a textit{non-modal} analysis technique that characterizes the diffusion properties of spectral element methods for linear convection-diffusion systems. While strictly speaking only valid for linear problems, the analysis is devised so th at it can give critical insights on two questions: (i) Why do spectral element methods suffer from stability issues in under-resolved computations of nonlinear problems? And, (ii) why do they successfully predict under-resolved turbulent flows even without a subgrid-scale model? The answer to these two questions can in turn provide crucial guidelines to construct more robust and accurate schemes for complex under-resolved flows, commonly found in industrial applications. For illustration purposes, this analysis technique is applied to the hybridized discontinuous Galerkin methods as representatives of spectral element methods. The effect of the polynomial order, the upwinding parameter and the Peclet number on the so-called textit{short-term diffusion} of the scheme are investigated. From a purely non-modal analysis point of view, polynomial orders between $2$ and $4$ with standard upwinding are well suited for under-resolved turbulence simulations. For lower polynomial orders, diffusion is introduced in scales that are much larger than the grid resolution. For higher polynomial orders, as well as for strong under/over-upwinding, robustness issues can be expected. The non-modal analysis results are then tested against under-resolved turbulence simulations of the Burgers, Euler and Navier-Stokes equations. While devised in the linear setting, our non-modal analysis succeeds to predict the behavior of the scheme in the nonlinear problems considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا