ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial growth and thermodynamic stability of SrIrO3/SrTiO3 heterostructures

155   0   0.0 ( 0 )
 نشر من قبل Dirk Groenendijk
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Obtaining high-quality thin films of 5d transition metal oxides is essential to explore the exotic semimetallic and topological phases predicted to arise from the combination of strong electron correlations and spin-orbit coupling. Here, we show that the transport properties of SrIrO3 thin films, grown by pulsed laser deposition, can be optimized by considering the effect of laser-induced modification of the SrIrO3 target surface. We further demonstrate that bare SrIrO3 thin films are subject to degradation in air and are highly sensitive to lithographic processing. A crystalline SrTiO3 cap layer deposited in-situ is effective in preserving the film quality, allowing us to measure metallic transport behavior in films with thicknesses down to 4 unit cells. In addition, the SrTiO3 encapsulation enables the fabrication of devices such as Hall bars without altering the film properties, allowing precise (magneto)transport measurements on micro- and nanoscale devices.



قيم البحث

اقرأ أيضاً

Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar ox ides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.
A detailed defect energy level map was investigated for heterostructures of 26 unit cells of LaAlO3 on SrTiO3 prepared at a low oxygen partial pressure of 10-6 mbar. The origin is attributed to the presence of dominating oxygen defects in SrTiO3 subs trate. Using femtosecond laser spectroscopy, the transient absorption and relaxation times for various transitions were determined. An ultrafast relaxation process of 2-3 picosecond from the conduction band to the closest defect level and a slower process of 70-92 picosecond from conduction band to intra-band defect level were observed. The results are discussed on the basis of propose defect-band diagram.
In heterostructures of LaAlO3 (LAO) and SrTiO3 (STO), two nonmagnetic insulators, various forms of magnetism have been observed [1-7], which may [8, 9] or may not [10] arise from interface charge carriers that migrate from the LAO to the interface in an electronic reconstruction [11]. We image the magnetic landscape [5] in a series of n-type samples of varying LAO thickness. We find ferromagnetic patches that appear only above a critical thickness, similar to that for conductivity [12]. Consequently we conclude that an interface reconstruction is necessary for the formation of magnetism. We observe no change in ferromagnetism with gate voltage, and detect ferromagnetism in a non-conducting p-type sample, indicating that the carriers at the interface do not need to be itinerant to generate magnetism. The fact that the ferromagnetism appears in isolated patches whose density varies greatly between samples strongly suggests that disorder or local strain induce magnetism in a population of the interface carriers.
We investigated the electronic properties of epitaxially stabilized perovskite SrIrO3 and demonstrated the effective strain-control on its electronic structure. Comprehensive transport measurements showed that the strong spin-orbit coupling renders a novel semimetallic phase for the J_eff=1/2 electrons rather than an ordinary correlated metal, elucidating the nontrivial mechanism underlying the dimensionality-controlled metal-insulator transition in iridates. The electron-hole symmetry of this correlated semimetal was found to exhibit drastic variation when subject to bi-axial strain. Under compressive strain, substantial electron-hole asymmetry is observed in contrast to the tensile side, where the electron and hole effective masses are comparable, illustrating the susceptivity of the J_eff=1/2 to structural distortion. Tensile strain also shrinks the Fermi surface, indicative of an increasing degree of correlation which is consistent with optical measurements. These results pave a pathway to investigate and manipulate the electronic states in spin-orbit-coupled correlated oxides, and lay the foundation for constructing 5d transition metal heterostructures.
5d transition-metal-based oxides display emergent phenomena due to the competition between the relevant energy scales of the correlation, bandwidth, and most importantly, the strong spin-orbit coupling (SOC). Starting from the prediction of novel oxi de topological insulators in bilayer ABO3 (B = 5d elements) thin-film grown along the (111) direction, 5d-based perovskites (Pv) form a new paradigm in the thin-film community. Here, we reviewed the scientific accomplishments in Pv-SrIrO3 thin films, a popular candidate for observing non-trivial topological phenomena. Although the predicted topological phenomena are unknown, the Pv-SrIrO3 thin film shows many emergent properties due to the delicate interplay between its various degrees of freedom. These observations provide new physical insight and encourage further research on the design of new 5d-based heterostructures or superlattices for the observation of the hidden topological quantum phenomena in strong spin-orbit coupled oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا