ﻻ يوجد ملخص باللغة العربية
We report ab initio calculations of the dielectric function of six mono- and bilayer molybdenum dichalcogenides based in a Bethe Salpether equation+G$_0$W$_0$ ansatz, focussing on the excitonic transitions dominating the absorption spectrum up to an excitation energy of 3,eV. Our calculations suggest that switching chalcogen atoms and the strength of interlayer interactions should affect the detailed composition of the high C peaks in experimental optical spectra of molybdenum dichalcogenides and cause a significant spin-orbit-splitting of the contributing excitonic transitions in monolayer MoSe$_2$ and MoTe$_2$. This can be explained through changes in the electronic dispersion around the Fermi energy along the chalcogen series S$rightarrow$Se$rightarrow$Te that move the van-Hove singularities in the density of states of the two-dimensional materials along the textit{$Gamma$}-textit{K} line in the Brillouin zone. Further, we confirm the distinct interlayer character of the textsl{C} peak transition in few-layer MoS$_2$ that was predicted before from experimental data and show that a similar behaviour can be expected for MoSe$_2$ and MoTe$_2$ as well.
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence ba
Using ab initio tight-binding approaches, we investigate Floquet band engineering of the 1T phase of transition metal dichalcogenides (MX2, M = W, Mo and X = Te, Se, S) monolayers under the irradiation with circularly polarized light. Our first princ
Two dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary physical properties. The unique properties make them become ide
Atomically thin transition metal dichalcogenides (TMDs) are direct-gap semiconductors with strong light-matter and Coulomb interaction. The latter accounts for tightly bound excitons, which dominate the optical properties of these technologically pro
We study the second-order Raman process of mono- and few-layer MoTe$_2$, by combining {em ab initio} density functional perturbation calculations with experimental Raman spectroscopy using 532, 633 and 785 nm excitation lasers. The calculated electro