ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauge angle dependence in TDHFB calculations of ${}^{20}$O + ${}^{20}$O head-on collisions with the Gogny interaction

75   0   0.0 ( 0 )
 نشر من قبل Yukio Hashimoto
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A numerical method to solve the TDHFB equations by using a hybrid basis of the two-dimensional harmonic oscillator eigenfunctions and one-dimensional Lagrange mesh with the Gogny effective interaction is applied to the head-on collisions of the superfluid nuclei ${}^{20}$Os. Taking the energies around the barrier top energy, the trajectories, pairing energies, and numbers of transferred nucleons are displayed. Their dependence on the relative gauge angle at the initial time is studied by taking typical sample points of the gauge angle. It turned out that the functional form of the flux of the neutrons across a section plane is proportional to the sine of the two times of the gauge angle.



قيم البحث

اقرأ أيضاً

The transfer reaction between two nuclei in the superfluid phase is studied with the Time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory. In order to restore the symmetry of the relative gauge angle a set of independent TDHFB evolutions is done. Th en the transfer probability is computed using a triple projection method. This method is first tested to determine the transfer probabilities on a toy model and compared to the exact solution. It is then applied to the reactions $^{20}$O+$^{20}$O and $^{14}$O+$^{20}$O in a realistic framework with a Gogny interaction.
We report on the results of the calculations of the low energy excitation patterns for three Zirconium isotopes, viz. $^{80}$Zr$_{40}$, $^{96}$Zr$_{56}$ and $^{110}$Zr$_{70}$, reported by other authors to be doubly-magic tetrahedral nuclei (with tetr ahedral magic numbers $Z$=40 and $N$=40, 56 and 70). We employ the realistic Gogny effective interactions using three variants of their parametrisation and the particle-number, parity and the angular-momentum projection techniques. We confirm quantitatively that the resulting spectra directly follow the pattern expected from the group theory considerations for the tetrahedral symmetric quantum objects. We also find out that, for all the nuclei studied, the correlation energy obtained after the angular momentum projection is very large for the tetrahedral deformation as well as other octupole deformations. The lowering of the energies of the resulting configurations is considerable, i.e. by about 10 MeV or even more, once again confirming the significance of the angular-momentum projections techniques in the mean-field nuclear structure calculations.
Background The nuclear structure of the cluster bands in $^{20}$Ne presents a challenge for different theoretical approaches. It is especially difficult to explain the broad 0$^+$, 2$^+$ states at 9 MeV excitation energy. Simultaneously, it is impo rtant to obtain more reliable experimental data for these levels in order to quantitatively assess the theoretical framework. Purpose To obtain new data on $^{20}$Ne $alpha$ cluster structure. Method Thick target inverse kinematics technique was used to study the $^{16}$O+$alpha$ resonance elastic scattering and the data were analyzed using an textit{R} matrix approach. The $^{20}$Ne spectrum, the cluster and nucleon spectroscopic factors were calculated using cluster-nucleon configuration interaction model (CNCIM). Results We determined the parameters of the broad resonances in textsuperscript{20}Ne: 0$^+$ level at 8.77 $pm$ 0.150 MeV with a width of 750 (+500/-220) keV; 2$^+$ level at 8.75 $pm$ 0.100 MeV with the width of 695 $pm$ 120 keV; the width of 9.48 MeV level of 65 $pm$ 20 keV and showed that 9.19 MeV, 2$^+$ level (if exists) should have width $leq$ 10 keV. The detailed comparison of the theoretical CNCIM predictions with the experimental data on cluster states was made. Conclusions Our experimental results by the TTIK method generally confirm the adopted data on $alpha$ cluster levels in $^{20}$Ne. The CNCIM gives a good description of the $^{20}$Ne positive parity states up to an excitation energy of $sim$ 7 MeV, predicting reasonably well the excitation energy of the states and their cluster and single particle properties. At higher excitations, the qualitative disagreement with the experimentally observed structure is evident, especially for broad resonances.
We present our current studies and our future plans on microscopic potential based on effective nucleon-nucleon interaction and many-body theory. This framework treats in an unified way nuclear structure and reaction. It offers the opportunity to lin k the underlying effective interaction to nucleon scattering observables. The more consistently connected to a variety of reaction and structure experimental data the framework will be, the more constrained effective interaction will be. As a proof of concept, we present some recent results for both neutron and proton scattered from spherical target nucleus, namely 40 Ca, using the Gogny D1S interaction. Possible fruitful crosstalks between microscopic potential, phenomenological potential and effective interaction are exposed. We then draw some prospective plans for the forthcoming years including scattering from spherical nuclei experiencing pairing correlations, scattering from axially deformed nuclei, and new effective interaction with reaction constraints.
The proton-induced $alpha$ knockout reaction has been utilized for decades to investigate the $alpha$ cluster states of nuclei, of the ground state in particular. However, even in recent years, it is reported that the deduced $alpha$ spectroscopic fa ctors from $alpha$ knockout experiments and reaction analyses with a phenomenological $alpha$ cluster wave function diverge depending on the kinematical condition of the reaction. In the present study we examine the theoretical description of the $^{20}$Ne($p$,$palpha$)$^{16}$O cross section based on the antisymmetrized molecular dynamics and the distorted wave impulse approximation by comparing with existing experimental data. We also investigate the correspondence between the $alpha$ cluster wave function and the $alpha$ knockout cross section. The existing $^{20}$Ne($p$,$palpha$)$^{16}$O data at 101.5 MeV is well reproduced by the present framework. Due to the peripherality of the reaction, the surface region of the cluster wave function is selectively reflected to the knockout cross section. A quantitatively reliable $alpha$ cluster wave function, $p$-$alpha$ cross section, and distorting potentials between scattering particles, $alpha$-$^{16}$O in particular, are crucial for the quantitative description of the ($p$,$palpha$) cross section. Due to the peripherality of the reaction, the ($p$,$palpha$) cross section is a good probe for the surface $alpha$ amplitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا