ﻻ يوجد ملخص باللغة العربية
A numerical method to solve the TDHFB equations by using a hybrid basis of the two-dimensional harmonic oscillator eigenfunctions and one-dimensional Lagrange mesh with the Gogny effective interaction is applied to the head-on collisions of the superfluid nuclei ${}^{20}$Os. Taking the energies around the barrier top energy, the trajectories, pairing energies, and numbers of transferred nucleons are displayed. Their dependence on the relative gauge angle at the initial time is studied by taking typical sample points of the gauge angle. It turned out that the functional form of the flux of the neutrons across a section plane is proportional to the sine of the two times of the gauge angle.
The transfer reaction between two nuclei in the superfluid phase is studied with the Time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory. In order to restore the symmetry of the relative gauge angle a set of independent TDHFB evolutions is done. Th
We report on the results of the calculations of the low energy excitation patterns for three Zirconium isotopes, viz. $^{80}$Zr$_{40}$, $^{96}$Zr$_{56}$ and $^{110}$Zr$_{70}$, reported by other authors to be doubly-magic tetrahedral nuclei (with tetr
Background The nuclear structure of the cluster bands in $^{20}$Ne presents a challenge for different theoretical approaches. It is especially difficult to explain the broad 0$^+$, 2$^+$ states at 9 MeV excitation energy. Simultaneously, it is impo
We present our current studies and our future plans on microscopic potential based on effective nucleon-nucleon interaction and many-body theory. This framework treats in an unified way nuclear structure and reaction. It offers the opportunity to lin
The proton-induced $alpha$ knockout reaction has been utilized for decades to investigate the $alpha$ cluster states of nuclei, of the ground state in particular. However, even in recent years, it is reported that the deduced $alpha$ spectroscopic fa