ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative description of the $^{20}$Ne($p$,$palpha$)$^{16}$O cross section as a means of probing the surface $alpha$ amplitude

70   0   0.0 ( 0 )
 نشر من قبل Kazuki Yoshida
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The proton-induced $alpha$ knockout reaction has been utilized for decades to investigate the $alpha$ cluster states of nuclei, of the ground state in particular. However, even in recent years, it is reported that the deduced $alpha$ spectroscopic factors from $alpha$ knockout experiments and reaction analyses with a phenomenological $alpha$ cluster wave function diverge depending on the kinematical condition of the reaction. In the present study we examine the theoretical description of the $^{20}$Ne($p$,$palpha$)$^{16}$O cross section based on the antisymmetrized molecular dynamics and the distorted wave impulse approximation by comparing with existing experimental data. We also investigate the correspondence between the $alpha$ cluster wave function and the $alpha$ knockout cross section. The existing $^{20}$Ne($p$,$palpha$)$^{16}$O data at 101.5 MeV is well reproduced by the present framework. Due to the peripherality of the reaction, the surface region of the cluster wave function is selectively reflected to the knockout cross section. A quantitatively reliable $alpha$ cluster wave function, $p$-$alpha$ cross section, and distorting potentials between scattering particles, $alpha$-$^{16}$O in particular, are crucial for the quantitative description of the ($p$,$palpha$) cross section. Due to the peripherality of the reaction, the ($p$,$palpha$) cross section is a good probe for the surface $alpha$ amplitude.



قيم البحث

اقرأ أيضاً

Direct evidence of the $alpha$-cluster manifestation in bound states has not been obtained yet, although a number of experimental studies were carried out to extract the information of the clustering. In particular in conventional analyses of $alpha$ -transfer reactions, there exist a few significant problems on reaction models, which are insufficient to qualitatively discuss the cluster structure. We aim to verify the development of the $alpha$-cluster structure from observables. As the first application, we plan to extract the spatial information of the cluster structure of the $^{20}$Ne nucleus in its ground state through the cross section of the $alpha$-transfer reaction $^{16}$O($^6$Li,~$d$)$^{20}$Ne. For the analysis of the transfer reaction, we work with the coupled-channel Born approximation (CCBA) approach, in which the breakup effect of $^6$Li is explicitly taken into account by means of the continuum-discretized coupled-channel method based on the three-body $alpha + d + {}^{16}$O model. The two methods are adopted to calculate the overlap function between $^{20}$Ne and $alpha + {}^{16}$O; one is the microscopic cluster model (MCM) with the generator coordinate method, and the other is the phenomenological two-body potential model (PM). We show that the CCBA calculation with the MCM wave function gives a significant improvement of the theoretical result on the angular distribution of the transfer cross section, which is consistent with the experimental data. Employing the PM, it is discussed which region of the cluster wave function is probed on the transfer cross section. It is found that the surface region of the cluster wave function is sensitive to the cross section. The present work is situated as the first step in obtaining important information to systematically investigate the cluster structure.
Background The nuclear structure of the cluster bands in $^{20}$Ne presents a challenge for different theoretical approaches. It is especially difficult to explain the broad 0$^+$, 2$^+$ states at 9 MeV excitation energy. Simultaneously, it is impo rtant to obtain more reliable experimental data for these levels in order to quantitatively assess the theoretical framework. Purpose To obtain new data on $^{20}$Ne $alpha$ cluster structure. Method Thick target inverse kinematics technique was used to study the $^{16}$O+$alpha$ resonance elastic scattering and the data were analyzed using an textit{R} matrix approach. The $^{20}$Ne spectrum, the cluster and nucleon spectroscopic factors were calculated using cluster-nucleon configuration interaction model (CNCIM). Results We determined the parameters of the broad resonances in textsuperscript{20}Ne: 0$^+$ level at 8.77 $pm$ 0.150 MeV with a width of 750 (+500/-220) keV; 2$^+$ level at 8.75 $pm$ 0.100 MeV with the width of 695 $pm$ 120 keV; the width of 9.48 MeV level of 65 $pm$ 20 keV and showed that 9.19 MeV, 2$^+$ level (if exists) should have width $leq$ 10 keV. The detailed comparison of the theoretical CNCIM predictions with the experimental data on cluster states was made. Conclusions Our experimental results by the TTIK method generally confirm the adopted data on $alpha$ cluster levels in $^{20}$Ne. The CNCIM gives a good description of the $^{20}$Ne positive parity states up to an excitation energy of $sim$ 7 MeV, predicting reasonably well the excitation energy of the states and their cluster and single particle properties. At higher excitations, the qualitative disagreement with the experimentally observed structure is evident, especially for broad resonances.
The formation of $alpha$ particle on nuclear surface has been a fundamental problem since the early age of nuclear physics. It strongly affects the $alpha$ decay lifetime of heavy and superheavy elements, level scheme of light nuclei, and the synthes is of the elements in stars. However, the $alpha$-particle formation in medium-mass nuclei has been poorly known despite its importance. Here, based on the $^{48}{rm Ti}(p,palpha)^{44}{rm Ca}$ reaction analysis, we report that the $alpha$-particle formation in a medium-mass nucleus $^{48}{rm Ti}$ is much stronger than that expected from a mean-field approximation, and the estimated average distance between $alpha$ particle and the residue is as large as 4.5 fm. This new result poses a challenge of describing four nucleon correlations by microscopic nuclear models.
Collisions of light and heavy nuclei in relativistic heavy-ion collisions have been shown to be sensitive to nuclear structure. With a proposed $^{16}mathrm{O}^{16}mathrm{O}$ run at the LHC and RHIC we study the potential for finding $alpha$ clusteri ng in $^{16}$O. Here we use the state-of-the-art iEBE-VISHNU package with $^{16}$O nucleonic configurations from {rm ab initio} nuclear lattice simulations. This setup was tuned using a Bayesian analysis on pPb and PbPb systems. We find that the $^{16}mathrm{O}^{16}mathrm{O}$ system always begins far from equilibrium and that at LHC and RHIC it approaches the regime of hydrodynamic applicability only at very late times. Finally, by taking ratios of flow harmonics we are able to find measurable differences between $alpha$-clustering, nucleonic, and subnucleonic degrees of freedom in the initial state.
117 - D. Q. Fang , Y. G. Ma , X. Z. Cai 2010
We study the relation between neutron removal cross section ($sigma_{-N}$) and neutron skin thickness for finite neutron rich nuclei using the statistical abrasion ablation (SAA) model. Different sizes of neutron skin are obtained by adjusting the di ffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between $sigma_{-N}$ and the neutron skin thickness for neutron rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for the neutron skin thickness in neutron rich nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا