ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hard X-ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

110   0   0.0 ( 0 )
 نشر من قبل Mihoko Yukita
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR observations constrain any AGN to be either highly obscured or to have an extremely low luminosity of $_{sim}^<$10$^{38}$ erg/s (10-30 keV), implying it is emitting at a very low Eddington ratio. An X-ray point source consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 10$^{38}$ erg/s may be a low-luminosity AGN but is more consistent with being an X-ray binary.



قيم البحث

اقرأ أيضاً

We report on simultaneous observations of the local starburst system Arp 299 with NuSTAR and Chandra, which provides the first resolved images of this galaxy up to energies of ~ 45 keV. Fitting the 3-40 keV spectrum reveals a column density of $N_{rm H}$ ~ 4 x10^{24} cm^{-2}, characteristic of a Compton-thick AGN, and a 10-30 keV luminosity of 1.2x 10^{43} ergs s^{-1}. The hard X-rays detected by NuSTAR above 10 keV are centered on the western nucleus, Arp 299-B, which previous X-ray observations have shown to be the primary source of neutral Fe-K emission. Other X-ray sources, including Arp 299-A, the eastern nucleus which is also thought to harbor an AGN, as well as X-ray binaries, contribute $lesssim 10%$ to the 10-20 keV emission from the Arp 299 system. The lack of significant emission above 10 keV other than that attributed to Arp 299-B suggests that: a) any AGN in Arp 299-A must be heavily obscured ($N_{rm H}$ > 10^{24} cm^{-2}) or have a much lower luminosity than Arp 299-B and b) the extranuclear X-ray binaries have spectra that cut-off above ~10 keV. Such soft spectra are characteristic of ultraluminous X-ray (ULX) sources observed to date by NuSTAR.
We present results from the the first campaign of dedicated solar observations undertaken by the textit{Nuclear Spectroscopic Telescope ARray} ({em NuSTAR}) hard X-ray telescope. Designed as an astrophysics mission, {em NuSTAR} nonetheless has the ca pability of directly imaging the Sun at hard X-ray energies ($>$3~keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where textit{NuSTAR} will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with textit{NuSTAR}, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, hard X-ray emission from high in the solar corona, and full-disk hard X-ray images of the Sun.
We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by NuSTAR and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the bro adband coverage to 0.3-20 keV. The observations were carried out in two epochs separated by approximately 10 days, and showed little spectral variation, with an observed luminosity of Lx = (4.95+/-0.11)e39 erg/s. The broadband spectrum confirms the presence of a clear spectral downturn above 10 keV seen in some previous observations. This cutoff is inconsistent with the standard low/hard state seen in Galactic black hole binaries, as would be expected from an intermediate mass black hole accreting at significantly sub-Eddington rates given the observed luminosity. The continuum is apparently dominated by two optically thick thermal-like components, potentially accompanied by a faint high energy tail. The broadband spectrum is likely associated with an accretion disk that differs from a standard Shakura & Sunyaev thin disk.
We present results of the point spread function (PSF) calibration of the hard X-ray optics of the Nuclear Spectroscopic Telescope Array (NuSTAR). Immediately post-launch, NuSTAR has observed bright point sources such as Cyg X-1, Vela X-1, and Her X-1 for the PSF calibration. We use the point source observations taken at several off-axis angles together with a ray-trace model to characterize the in-orbit angular response, and find that the ray-trace model alone does not fit the observed event distributions and applying empirical corrections to the ray-trace model improves the fit significantly. We describe the corrections applied to the ray-trace model and show that the uncertainties in the enclosed energy fraction (EEF) of the new PSF model is < 3% for extraction apertures of R > 60 with no significant energy dependence. We also show that the PSF of the NuSTAR optics has been stable over a period of ~300 days during its in-orbit operation.
309 - L. Ducci , M. Sasaki , F. Haberl 2013
We present the results obtained from the analysis of three XMM-Newton observations of M83. The aims of the paper are studying the X-ray source populations in M83 and calculating the X-ray luminosity functions of X-ray binaries for different regions o f the galaxy. We detected 189 sources in the XMM-Newton field of view in the energy range of 0.2-12 keV. We constrained their nature by means of spectral analysis, hardness ratios, studies of the X-ray variability, and cross-correlations with catalogues in X-ray, optical, infrared, and radio wavelengths. We identified and classified 12 background objects, five foreground stars, two X-ray binaries, one supernova remnant candidate, one super-soft source candidate and one ultra-luminous X-ray source. Among these sources, we classified for the first time three active galactic nuclei (AGN) candidates. We derived X-ray luminosity functions of the X-ray sources in M83 in the 2-10 keV energy range, within and outside the D_25 ellipse, correcting the total X-ray luminosity function for incompleteness and subtracting the AGN contribution. The X-ray luminosity function inside the D_25 ellipse is consistent with that previously observed by Chandra. The Kolmogorov-Smirnov test shows that the X-ray luminosity function of the outer disc and the AGN luminosity distribution are uncorrelated with a probability of about 99.3%. We also found that the X-ray sources detected outside the D_25 ellipse and the uniform spatial distribution of AGNs are spatially uncorrelated with a significance of 99.5%. We interpret these results as an indication that part of the observed X-ray sources are X-ray binaries in the outer disc of M83.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا