ترغب بنشر مسار تعليمي؟ اضغط هنا

Longitudinal magnon, inversion breaking and magnetic instabilities in the pseudo-Kagome francisites Cu3Bi(SeO3)2O2X with X=Br, Cl

79   0   0.0 ( 0 )
 نشر من قبل Peter Lemmens
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed Raman studies and a dielectric characterization of the pseudo-kagome Cu3Bi(SeO3)2O2X (X = Cl, Br). These compounds share competing nearest-neighbour ferromagnetic exchange and frustrating next-nearest-neighbour antiferromagnetic exchange as well as highly noncollinear magnetic ground state. However, at low temperature they differ with respect to the existence of inversion symmetry. For both compounds there exists a pronounced interplay of polar phonon modes with quantum magnetic fluctuations. A novel Raman mode appears for temperatures below the Neel temperature with a Fano lineshape and an enormous intensity that exceeds most of the phonon lines. We discuss a possible contribution of longitudinal magnons to this signal. In contrast, one magnon scattering based on linear transvers magnons is excluded based on a symmetry analysis of spin wave representations and Raman tensor calculations. There exists evidence that in these pseudo-kagome compounds magnetic quantum fluctuations carry an electric dipole moment. Our data as well as a comparison with previous far-infrared spectra allow us to conclude that Cu3Bi(SeO3)2O2Cl changes its symmetry most likely from Pmmn to P21mn with a second order structural phase transition at T*=120 K and becomes multiferroic. Cu3Bi(SeO3)2O2Br represents an interesting counter part as it does not show this instability and stays inversion symmetric down to lowest temperatures, investigated.



قيم البحث

اقرأ أيضاً

We explore magnetic behavior of kagome francisites Cu3Bi(SeO3)2O2X (X = Cl and Br) using first-principles calculations. To this end, we propose an approach based on the Hubbard model in the Wannier functions basis constructed on the level of local-de nsity approximation (LDA). The ground-state spin configuration is determined by a Hartree-Fock solution of the Hubbard model both in zero magnetic field and in applied magnetic fields. Additionally, parameters of an effective spin Hamiltonian are obtained by taking into account the hybridization effects and spin-orbit coupling. We show that only the former approach, the Hartree-Fock solution of the Hubbard model, allows for a complete description of the anisotropic magnetization process. While our calculations confirm that the canted zero-field ground state arises from a competition between ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor couplings in the kagome planes, weaker anisotropic terms are crucial for fixing spin directions and for the overall magnetization process. We thus show that the Hartree-Fock solution of an electronic Hamiltonian is a viable alternative to the analysis of effective spin Hamiltonians when a magnetic ground state and effects of external field are considered.
Anisotropic magnetic properties of a layered kagome-like system Cu3Bi(SeO3)2O2Br have been studied by bulk magnetization and magnetic susceptibility measurements as well as powder and single-crystal neutron diffraction. At T_N = 27.4 K the system dev elops an alternating antiferromagnetic order of (ab) layers, which individually exhibit canted ferrimagnetic moment arrangement, resulting from the competing ferro- and antiferro-magnetic intralayer exchange interactions. A magnetic field B_C ~ 0.8 T applied along the c axis (perpendicular to the layers) triggers a metamagnetic transition, when every second layer flips, i.e., resulting in a ferrimagnetic structure. Significantly higher fields are required to rotate the ferromagnetic component towards the b axis (~7 T) or towards the a axis (~15 T). The estimates of the exchange coupling constants and features indicative of an XY character of this quasi-2D system are presented.
Density-functional calculations of lattice dynamics and high-resolution synchrotron powder diffraction uncover antiferroelectric distortion in the kagome francisite Cu$_3$Bi(SeO$_3$)$_2$O$_2$Cl below 115K. Its Br-containing analogue is stable in the room-temperature crystal structure down to at least 10K, although the Br compound is on the verge of a similar antiferroelectric instability and reveals local displacements of Cu and Br atoms. The I-containing compound is stable in its room-temperature structure according to density-functional calculations. We show that the distortion involves cooperative displacements of Cu and Cl atoms, and originates from the optimization of interatomic distances for weakly bonded halogen atoms. The distortion introduces a tangible deformation of the kagome spin lattice and may be responsible for the reduced net magnetization of the Cl compound compared to the Br one. The polar structure of Cu$_3$Bi(SeO$_3$)$_2$O$_2$Cl is only slightly higher in energy than the non-polar antiferroelectric structure, but no convincing evidence of its formation could be obtained.
We present a comprehensive theory of the magnetic phases in twisted bilayer Cr-trihalides through a combination of first-principles calculations and atomistic simulations. We show that the stacking-dependent interlayer exchange leads to an effective moire field that is mostly ferromagnetic with antiferromagnetic patches. A wide range of noncollinear magnetic phases can be stabilized as a function of the twist angle and Dzyaloshinskii-Moriya interaction as a result of the competing interlayer antiferromagnetic coupling and the energy cost for forming domain walls. In particular, we demonstrate that for small twist angles various skyrmion crystal phases can be stabilized in both CrI$_3$ and CrBr$_3$. Our results provide an interpretation for the recent observation of noncollinear magnetic phases in twisted bilayer CrI$_3$ and demonstrate the possibility of engineering further nontrivial magnetic ground states in twisted bilayer Cr-trihalides.
We present the results of the first neutron powder and single crystal diffraction studies of the coupled spin tetrahedra systems ${CuTeX}$ (X=Cl, Br). Incommensurate antiferromagnetic order with the propagation vectors ${bf{k}_{Cl}}approx[0.150,0.422 ,half]$, ${bf{k}_{Br}}approx[0.158,0.354,half]$ sets in below $T_{N}$=18 K for X=Cl and 11 K for X=Br. No simple collinear antiferromagnetic or ferromagnetic arrangements of moments within Cu${}^{2+}$ tetrahedra fit these observations. Fitting the diffraction data to more complex but physically reasonable models with multiple helices leads to a moment of 0.67(1)$mu_B$/Cu${}^{2+}$ at 1.5 K for the Cl-compound. The reason for such a complex ground state may be geometrical frustration of the spins due to the intra- and inter-tetrahedral couplings having similar strengths. The magnetic moment in the Br- compound, calculated assuming it has the same magnetic structure as the Cl compound, is only 0.51(5)$mu_B$/Cu${}^{2+}$ at 1.5 K. In neither compound has any evidence for a structural transition accompanying the magnetic ordering been found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا