ﻻ يوجد ملخص باللغة العربية
Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle ($sim$180$arcdeg$) bipolar outflow (EWBO) in a cluster forming region AFGL 5142 from low-velocity emission of the HCN (3-2) and HCO$^{+}$ (3-2) lines. This bipolar outflow is along a north-west to south-east direction with a line-of-sight flow velocity of about 3 km~s$^{-1}$ and is spatially connected to the high-velocity jet-like outflows. It seems to be a collection of low-velocity material entrained by the high-velocity outflows due to momentum feedback. The total ejected mass and mass loss rate due to both high velocity jet-like outflows and the EWBO are $sim$24.5 M$_{sun}$ and $sim1.7times10^{-3}$ M$_{sun}$~yr$^{-1}$, respectively. Global collapse of the clump is revealed by the blue profile in the HCO$^{+}$ (1-0) line. A hierarchical network of filaments was identified in NH$_{3}$ (1,1) emission. Clear velocity gradients of the order of 10 km~s$^{-1}$~pc$^{-1}$ are found along filaments, indicating gas inflow along the filaments. The sum of the accretion rate along filaments and mass infall rate along the line of sight is $sim$3.1$times10^{-3}$ M$_{sun}$~yr$^{-1}$, which exceeds the total mass loss rate, indicating that the central cluster is probably still gaining mass. The central cluster is highly fragmented and 22 condensations are identified in 1.1 mm continuum emission. The fragmentation process seems to be determined by thermal pressure and turbulence. The magnetic field may not play an important role in fragmentation.
During star formation, the accretion disk drives fast MHD winds which usually contain two components, a collimated jet and a radially distributed wide-angle wind. These winds entrain the surrounding ambient gas producing molecular outflows. We report
We aim at investigating with high angular resolution the NH3/N2H+ ratio toward the high-mass star-forming region AFGL 5142 in order to study whether this ratio behaves similarly to the low-mass case, for which the ratio decreases from starless cores
We present ALMA follow-up observations of two massive, early-stage core candidates, C1-N & C1-S, in Infrared Dark Cloud (IRDC) G028.37+00.07, which were previously identified by their N2D+(3-2) emission and show high levels of deuteration of this spe
Massive protostars generate strong radiation feedback, which may help set the mass they achieve by the end of the accretion process. Studying such feedback is therefore crucial for understanding the formation of massive stars. We report the discovery
We present Submillimeter Array (SMA) 1.35 mm subarcsecond angular resolution observations toward the LkH{alpha} 234 intermediate-mass star-forming region. The dust emission arises from a filamentary structure of $sim$5 arcsec ($sim$4500 au) enclosing