ﻻ يوجد ملخص باللغة العربية
We aim at investigating with high angular resolution the NH3/N2H+ ratio toward the high-mass star-forming region AFGL 5142 in order to study whether this ratio behaves similarly to the low-mass case, for which the ratio decreases from starless cores to cores associated with YSOs. CARMA was used to observe the 3.2 mm continuum and N2H+(1-0) emission. We used NH3(1,1) and (2,2), HCO+(1-0) and H13CO+(1-0) data from the literature and we performed a time-dependent chemical modeling of the region. The 3.2 mm continuum emission reveals a dust condensation of ~23 Msun associated with the massive YSOs, deeply embedded in the strongest NH3 core (hereafter central core). The N2H+ emission reveals two main cores, the western and eastern core, located to the west and to the east of the mm condensation, and surrounded by a more extended and complex structure of ~0.5 pc. Toward the central core the N2H+ emission drops significantly, indicating a clear chemical differentiation in the region. We found low values of the NH3/N2H+ ratio ~50-100 toward the western/eastern cores, and high values up to 1000 in the central core. The chemical model indicates that density, and in particular temperature, are key parameters in determining the NH3/N2H+ ratio. The high density and temperature reached in the central core allow molecules like CO to evaporate from grain mantles. The CO desorption causes a significant destruction of N2H+, favoring the formation of HCO+. This result is supported by our observations, which show that N2H+ and HCO+ are anticorrelated in the central core. The observed values of the NH3/N2H+ ratio in the central core can be reproduced by our model for times t~4.5-5.3x10^5 yr (central) and t~10^4-3x10^6 yr (western/eastern). The NH3/N2H+ ratio in AFGL 5142 does not follow the same trend as in regions of low-mass star formation mainly due to the high temperature reached in hot cores.
Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle ($sim$180$arcdeg$) bipolar outflow (EWBO) in a cluster forming region AFGL 5142 from low
We present the first detection of N2H+ towards a low-mass protostellar outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30-m antenna. We observed emission at 93 GHz due to the
Seven isolated, nearby low-mass starless molecular cloud cores have been observed as part of the Herschel key program Earliest Phases of Star formation (EPoS). By applying a ray-tracing technique to the obtained continuum emission and complementary (
We aim to understand the rich chemical composition of AFGL 2591, a prototypical isolated high-mass star-forming region. Based on HIFI and JCMT data, the molecular abundances of species found in the protostellar envelope of AFGL 2591 were derived wi
An Australia Telescope Compact Array search for 22 GHz water masers towards 6.7 GHz class II methanol masers detected in the Methanol Multibeam (MMB) survey has resulted in the detection of extremely high velocity emission from one of the sources. Th