ﻻ يوجد ملخص باللغة العربية
Pulsars show two classes of rotational irregularities that can be used to understand neutron-star interiors and magnetospheres: glitches and timing noise. Here we present an analysis of the Vela pulsar spanning nearly 21 yr of observation and including 8 glitches. We identify the relative pulse number of all of the observations between glitches, with the only pulse-number ambiguities existing over glitch events. We use the phase coherence of the timing solution to simultaneously model the timing noise and glitches in a Bayesian framework, allowing us to select preferred models for both. We find the glitches can be described using only permanent and transient changes in spin frequency, i.e., no step changes in frequency derivative. For all of the glitches, we only need two exponentially decaying changes in spin frequency to model the transient components. In contrast to previous studies, we find that the dominant transient components decay on a common $approx$ 1300 d time scale, and that a larger fraction ( $gtrsim 25%$) of glitch amplitudes are associated with these transient components. We also detect shorter-duration transient components of $approx$ 25 d, as previously observed, but are limited in sensitivity to events with shorter durations by the cadence of our observations. The timing noise is well described by a steep power-law process that is independent of the glitches and subdominant to the glitch recovery. The braking index is constrained to be $<$ 8 with 95% confidence. This methodology can be used to robustly measure the properties of glitches and timing noise in other pulsars.
Glitches are sudden increases in the rotation rate $ u$ of neutron stars, which are thought to be driven by the neutron superfluid inside the star. The Vela pulsar presents a comparatively high rate of glitches, with 21 events reported since observat
Timing results for the black-widow pulsar J2051-0827 are presented, using a 21-year dataset from four European Pulsar Timing Array telescopes and the Parkes radio telescope. This dataset, which is the longest published to date for a black-widow syste
While pulsars possess exceptional rotational stability, large scale timing studies have revealed at least two distinct types of irregularities in their rotation: red timing noise and glitches. Using modern Bayesian techniques, we investigated the tim
Timing analysis of PSR J1705$-$1906 using data from Nanshan 25-m and Parkes 64-m radio telescopes, which span over fourteen years, shows that the pulsar exhibits significant proper motion, and rotation instability. We updated the astrometry parameter
We report the flux measurement of the Vela like pulsar B1800-21 at the low radio frequency regime over multiple epochs spanning several years. The spectrum shows a turnover around the GHz frequency range and represents a typical example of gigahertz-