ترغب بنشر مسار تعليمي؟ اضغط هنا

The UTMOST pulsar timing programme II: Timing noise across the pulsar population

400   0   0.0 ( 0 )
 نشر من قبل Marcus Lower
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While pulsars possess exceptional rotational stability, large scale timing studies have revealed at least two distinct types of irregularities in their rotation: red timing noise and glitches. Using modern Bayesian techniques, we investigated the timing noise properties of 300 bright southern-sky radio pulsars that have been observed over 1.0-4.8 years by the upgraded Molonglo Observatory Synthesis Telescope (MOST). We reanalysed the spin and spin-down changes associated with nine previously reported pulsar glitches, report the discovery of three new glitches and four unusual glitch-like events in the rotational evolution of PSR J1825$-$0935. We develop a refined Bayesian framework for determining how red noise strength scales with pulsar spin frequency ($ u$) and spin-down frequency ($dot{ u}$), which we apply to a sample of 280 non-recycled pulsars. With this new method and a simple power-law scaling relation, we show that red noise strength scales across the non-recycled pulsar population as $ u^{a} |dot{ u}|^{b}$, where $a = -0.84^{+0.47}_{-0.49}$ and $b = 0.97^{+0.16}_{-0.19}$. This method can be easily adapted to utilise more complex, astrophysically motivated red noise models. Lastly, we highlight our timing of the double neutron star PSR J0737$-$3039, and the rediscovery of a bright radio pulsar originally found during the first Molonglo pulsar surveys with an incorrectly catalogued position.



قيم البحث

اقرأ أيضاً

We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more th an 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars) we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allows us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and $463~text{km} : text{s}^{-1}$ fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by log-normal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.
The main goal of pulsar timing array experiments is to detect correlated signals such as nanohertz-frequency gravitational waves. Pulsar timing data collected in dense monitoring campaigns can also be used to study the stars themselves, their binary companions, and the intervening ionised interstellar medium. Timing observations are extraordinarily sensitive to changes in path length between the pulsar and the Earth, enabling precise measurements of the pulsar positions, distances and velocities, and the shapes of their orbits. Here we present a timing analysis of 25 pulsars observed as part of the Parkes Pulsar Timing Array (PPTA) project over time spans of up to 24 yr. The data are from the second data release of the PPTA, which we have extended by including legacy data. We make the first detection of Shapiro delay in four Southern pulsars (PSRs J1017$-$7156, J1125$-$6014, J1545$-$4550, and J1732$-$5049), and of parallax in six pulsars. The prominent Shapiro delay of PSR J1125$-$6014 implies a neutron star mass of $M_p = 1.5 pm 0.2 M_odot$ (68% credibility interval). Measurements of both Shapiro delay and relativistic periastron advance in PSR J1600$-$3053 yield a large but uncertain pulsar mass of $M_p = 2.06^{+0.44}_{-0.41}$ M$_odot$ (68% credibility interval). We measure the distance to PSR J1909$-$3744 to a precision of 10 lyr, indicating that for gravitational wave periods over a decade, the pulsar provides a coherent baseline for pulsar timing array experiments.
PSR J1740-3052 is a young pulsar in orbit around a companion that is most likely a B-type main-sequence star. Since its discovery more than a decade ago, data have been taken at several frequencies with instruments at the Green Bank, Parkes, Lovell, and Westerbork telescopes. We measure scattering timescales in the pulse profiles and dispersion measure changes as a function of binary orbital phase and present evidence that both of these vary as would be expected due to a wind from the companion star. Using pulse arrival times that have been corrected for the observed periodic dispersion measure changes, we find a timing solution spanning 1997 November to 2011 March. This includes measurements of the advance of periastron and the change in the projected semimajor axis of the orbit and sets constraints on the orbital geometry. From these constraints, we estimate that the pulsar received a kick of at least ~50 km/s at birth. A quasi-periodic signal is present in the timing residuals with a period of 2.2 times the binary orbital period. The origin of this signal is unclear.
99 - Andrew Lyne 2012
It has recently been shown that there is a close correlation between the slowdown rates and the pulse shapes of six pulsars, and between the slowdown rates and the flux density of three others. This indicates that these phenomena are related by chang es in the current flows in the pulsar magnetospheres. In this paper we review the observational status of these studies, which have now been extended to a total of 16 pulsars having correlated slowdown and pulse emission properties. The changes seem to be due to sudden switching between just two discrete magnetospheric states in the well-known processes of mode-changing and pulse nulling. We also address how widespread these phenomena are in the wider pulsar population.
We describe the procedure, nuances, issues, and choices involved in creating times-of-arrival (TOAs), residuals and error bars from a set of radio pulsar timing data. We discuss the issue of mis-matched templates, the problem that wide- bandwidth bac kends introduce, possible solutions to that problem, and correcting for offsets introduced by various observing systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا