ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization-group improved inflationary scenarios

135   0   0.0 ( 0 )
 نشر من قبل Ekaterina Pozdeeva
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of quantum field models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameters values. The scalar electrodynamics inflationary scenario thus obtained are seen to be in good agreement with the most recent observational data.



قيم البحث

اقرأ أيضاً

We use the effective field theory (EFT) framework to calculate the tail effect in gravitational radiation reaction, which enters at 4PN order in the dynamics of a binary system. The computation entails a subtle interplay between the near (or potentia l) and far (or radiation) zones. In particular, we find that the tail contribution to the effective action is non-local in time, and features both a dissipative and a `conservative term. The latter includes a logarithmic ultraviolet (UV) divergence, which we show cancels against an infrared (IR) singularity found in the (conservative) near zone. The origin of this behavior in the long-distance EFT is due to the point-particle limit -shrinking the binary to a point- which transforms a would-be infrared singularity into an ultraviolet divergence. This is a common occurrence in an EFT approach, which furthermore allows us to use renormalization group (RG) techniques to resum the resulting logarithmic contributions. We then derive the RG evolution for the binding potential and total mass/energy, and find agreement with the results obtained imposing the conservation of the (pseudo) stress-energy tensor in the radiation theory. While the calculation of the leading tail contribution to the effective action involves only one diagram, five are needed for the one-point function. This suggests logarithmic corrections may be easier to incorporate in this fashion. We conclude with a few remarks on the nature of these IR/UV singularities, the (lack of) ambiguities recently discussed in the literature, and the completeness of the analytic Post-Newtonian framework.
142 - D. Glavan 2013
We calculate the one-loop corrections from inflationary gravitons to the electromagnetic fields of a point charge and a point magnetic dipole on a locally de Sitter space background. Results are obtained both for an observer at rest in co-moving coor dinates, whose physical distance from the sources increases with the expanding universe, and for an observer at rest in static coordinates, whose physical distance from the sources is constant. The fields of both sources show the de Sitter analogs of the fractional $G/r^2$ corrections which occur in flat space, but there are also some fractional $G H^2$ corrections due to the scattering of virtual photons from the vast ensemble of infrared gravitons produced by inflation. The co-moving observer perceives the magnitude of the point charge to increase linearly with co-moving time and logarithmically with the co-moving position, however, the magnetic dipole shows only a negative logarithmic spatial variation. The static observer perceives no secular change of the point charge but he does report a secular enhancement of the magnetic dipole moment.
75 - Qin Fei , Yungui Gong , Jiong Lin 2017
We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of $e$-folds before the end of inflation. Using the relation between the observables like $n_s$ a nd $r$ with the slow-roll parameters, we reconstruct three classes of tachyon potentials. The model parameters are determined from the observations before the potentials are reconstructed, and the observations prefer the concave potential. We also discuss the constraints from the reheating phase preceding the radiation domination for the three classes of models by assuming the equation of state parameter $w_{re}$ during reheating is a constant. Depending on the model parameters and the value of $w_{re}$, the constraints on $N_{re}$ and $T_{re}$ are different. As $n_s$ increases, the allowed reheating epoch becomes longer for $w_{re}=-1/3$, 0 and $1/6$ while the allowed reheating epoch becomes shorter for $w_{re}=2/3$.
84 - L. Tan 2021
We include the single graviton loop contribution to the linearized Einstein equation. Explicit results are obtained for one loop corrections to the propagation of gravitational radiation. Although suppressed by a minuscule loop-counting parameter, th ese corrections are enhanced by the square of the number of inflationary e-foldings. One consequence is that perturbation theory breaks down for a very long epoch of primordial inflation. Another consequence is that the one loop correction to the tensor power spectrum might be observable, in the far future, after the full development of 21cm cosmology.
The BICEP2 collaboration has recently released data showing that the scalar-to-tensor ratio $r$ is much larger than expected. The immediate consequence, in the context of $f(R)$ gravity, is that the Starobinsky model of inflation is ruled out since i t predicts a value of $r$ much smaller than what is observed. Of course, the BICEP2 data need verification, especially from Planck with which there is some tension, therefore any conclusion seems premature. However, it is interesting to ask what would be the functional form of $f(R)$ in the case when the value of $r$ is different from the one predicted by the Starobinsky model. In this paper, we show how to determine the form of $f(R)$, once the slow-roll parameters are known with some accuracy. The striking result is that, for given values of the scalar spectral index $n_{S}$ and $r$, the effective Lagrangian has the form $f(R)=R^{zeta}$, where $zeta=2-varepsilon$ and $|varepsilon|ll 1$. Therefore, it appears that the inflationary phase of the Universe is best described by a $R^{2}$ theory, with a small deviation that, as we show, can be obtained by quantum corrections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا