ﻻ يوجد ملخص باللغة العربية
We consider the Type 1 and Type 2 noncommutative Borsuk-Ulam conjectures of Baum, D$k{a}$browski, and Hajac: there are no equivariant morphisms $A to A circledast_delta H$ or $H to A circledast_delta H$, respectively, when $H$ is a nontrivial compact quantum group acting freely on a unital $C^*$-algebra $A$. Here $A circledast_delta H$ denotes the equivariant noncommutative join of $A$ and $H$; this join procedure is a modification of the topological join that allows a free action of $H$ on $A$ to produce a free action of $H$ on $A circledast_delta H$. For the classical case $H = mathcal{C}(G)$, $G$ a compact group, we present a reduction of the Type 1 conjecture and counterexamples to the Type 2 conjecture. We also present some examples and conditions under which the Type 2 conjecture does hold.
We show that group actions on many treelike compact spaces are not too complicated dynamically. We first observe that an old argument of Seidler implies that every action of a topological group $G$ on a regular continuum is null and therefore also ta
We study some topological spaces that can be considered as hyperspaces associated to noncommutative spaces. More precisely, for a NC compact space associated to a unital C*-algebra, we consider the set of closed projections of the second dual of the
Given a C*-algebra $A$, a discrete abelian group $X$ and a homomorphism $Theta: Xto$ Out$A$ defining the dual action group $Gammasubset$ aut$A$, the paper contains results on existence and characterization of Hilbert ${A,Gamma}$, where the action is
We prove that, given any smooth action of a compact quantum group (in the sense of cite{rigidity}) on a compact smooth manifold satisfying some more natural conditions, one can get a Riemannian structure on the manifold for which the corresponding $C
The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product rep