ﻻ يوجد ملخص باللغة العربية
We prove that, given any smooth action of a compact quantum group (in the sense of cite{rigidity}) on a compact smooth manifold satisfying some more natural conditions, one can get a Riemannian structure on the manifold for which the corresponding $C^infty(M)$-valued inner product on the space of one-forms is preserved by the action.
Suppose that a compact quantum group ${mathcal Q}$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^{ast}$ (co)-action $alpha$ on $C(M)$, such that $alpha(C^infty(M)) subseteq C^infty(M, {mathcal Q})$ and the linear span of
The spectral functor of an ergodic action of a compact quantum group G on a unital C*-algebra is quasitensor, in the sense that the tensor product of two spectral subspaces is isometrically contained in the spectral subspace of the tensor product rep
Suppose that a compact quantum group $clq$ acts faithfully on a smooth, compact, connected manifold $M$, i.e. has a $C^*$ (co)-action $alpha$ on $C(M)$, such that the action $alpha$ is isometric in the sense of cite{Goswami} for some Riemannian struc
We use a tensor C*-category with conjugates and two quasitensor functors into the category of Hilbert spaces to define a *-algebra depending functorially on this data. If one of them is tensorial, we can complete in the maximal C*-norm. A particular
Actions of locally compact groups and quantum groups on W*-ternary rings of operators are discussed and related crossed products introduced. The results generalise those for von Neumann algebraic actions with proofs based mostly on passing to the lin