ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectra of semi-infinite quantum graph tubes

119   0   0.0 ( 0 )
 نشر من قبل Stephen Shipman
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spectrum of a semi-infinite quantum graph tube with square period cells is analyzed. The structure is obtained by rolling up a doubly periodic quantum graph into a tube along a period vector and then retaining only a semi-infinite half of the tube. The eigenfunctions associated to the spectrum of the half-tube involve all Floquet modes of the full tube. This requires solving the complex dispersion relation $D(lambda,k_1,k_2)=0$ with $(k_1,k_2)in(mathbb{C}/2pimathbb{Z})^2$ subject to the constraint $alpha k_1 + beta k_2 equiv 0$ (mod $2pi$), where $alpha$ and $beta$ are integers. The number of Floquet modes for a given $lambdainmathbb{R}$ is $2maxleft{ alpha, beta right}$. Rightward and leftward modes are determined according to an indefinite energy flux form. The spectrum may contain eigenvalues that depend on the boundary conditions, and some eigenvalues may be embedded in the continuous spectrum.



قيم البحث

اقرأ أيضاً

Recently, the staggered quantum walk (SQW) on a graph is discussed as a generalization of coined quantum walks on graphs and Szegedy walks. We present a formula for the time evolution matrix of a 2-tessellable SQW on a graph, and so directly give its spectra. Furthermore, we present a formula for the Szegedy matrix of a bipartite graph by the same method, and so give its spectra. As an application, we present a formula for the characteristic polynomial of the modified Szegedy matrix in the quantum search problem on a graph, and give its spectra.
175 - A. A. Kuznetsova 2010
In this paper a general definition of quantum conditional entropy for infinite-dimensional systems is given based on recent work of Holevo and Shirokov arXiv:1004.2495 devoted to quantum mutual and coherent informations in the infinite-dimensional ca se. The properties of the conditional entropy such as monotonicity, concavity and subadditivity are also generalized to the infinite-dimensional case.
195 - A.S. Holevo , M.E. Shirokov 2012
The coding theorem for the entanglement-assisted communication via infinite-dimensional quantum channel with linear constraint is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and the $chi$ -capacity of constrained channels are obtained and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between the coherent information and the measure of privacy of classical information transmission by infinite-dimensional quantum channel is proved.
We clarify that coined quantum walk is determined by only the choice of local quantum coins. To do so, we characterize coined quantum walks on graph by disjoint Euler circles with respect to symmetric arcs. In this paper, we introduce a new class of coined quantum walk by a special choice of quantum coins determined by corresponding quantum graph, called quantum graph walk. We show that a stationary state of quantum graph walk describes the eigenfunction of the quantum graph.
Generically, spectral statistics of spinless systems with time reversal invariance (TRI) and chaotic dynamics are well described by the Gaussian Orthogonal ensemble (GOE). However, if an additional symmetry is present, the spectrum can be split into independent sectors which statistics depend on the type of the groups irreducible representation. In particular, this allows the construction of TRI quantum graphs with spectral statistics characteristic of the Gaussian Symplectic ensembles (GSE). To this end one usually has to use groups admitting pseudo-real irreducible representations. In this paper we show how GSE spectral statistics can be realized in TRI systems with simpler symmetry groups lacking pseudo-real representations. As an application, we provide a class of quantum graphs with only $C_4$ rotational symmetry possessing GSE spectral statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا