ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay of flux guiding and Hall effect in Nb films with nanogrooves

44   0   0.0 ( 0 )
 نشر من قبل Oleksandr Dobrovolskiy V.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between vortex guiding and the Hall effect in superconducting Nb films with periodically arranged nanogrooves is studied via four-probe measurements in standard and Hall configurations and accompanying theoretical modeling. The nanogrooves are milled by focused ion beam and induce a symmetric pinning potential of the washboard type. The resistivity tensor of the films is determined in the limit of small current densities at temperatures close to the critical temperature for the fundamental matching configuration of the vortex lattice with respect to the pinning nanolandscape. The angle between the current direction with respect to the grooves is set at seven fixed values between $0^circ$ and $90^circ$. A sign change is observed in the temperature dependence of the Hall resistivity $rho_perp^-$ of as-grown films in a narrow temperature range near $T_c$. By contrast, for all nanopatterned films $rho_perp^-$ is nonzero in a broader temperature range below $T_c$, allowing us to discriminate between two contributions in $rho_perp^-$, namely one contribution originating from the guided vortex motion and the other one caused by the Hall anomaly just as in as-grown Nb films. All four measured resistivity components are successfully fitted to analytical expressions derived within the framework of a stochastic model of competing isotropic and anisotropic pinning. This provides evidence of the model validity for the description of the resistive response of superconductor thin films with washboard pinning nanolandscapes.



قيم البحث

اقرأ أيضاً

The flux flow properties of epitaxial niobium films with different pinning strengths are investigated by dc electrical resistance measurements and mapped to results derived within the framework of a theoretical model. Investigated are the cases of we ak random pinning in as-grown films, strong random pinning in Ga ion-irradiated films, and strong periodic pinning induced by a nanogroove array milled by focused ion beam. The generic feature of the current-voltage curves of the films consists in instability jumps to the normal state at some instability current density $j^ast$ as the vortex lattice reaches its critical velocity $v^ast$. While $v^ast(B)$ monotonically decreases for as-grown films, the irradiated films exhibit a non-monotonic dependence $v^ast(B)$ attaining a maximum in the low-field range. In the case of nanopatterned films, this broad maximum is accompanied by a much sharper maximum in both, $v^ast(B)$ and $j^ast(B)$, which we attribute to the commensurability effect when the spacing between the vortex rows coincides with the location of the grooves. We argue that the observed behavior of $v^ast(B)$ can be explained by the pinning effect on the vortex flow instability and support our claims by fitting the experimental data to theoretical expressions derived within a model accounting for the field dependence of the depinning current density.
The Hall effect is investigated in thin-film samples of iron-chalcogenide superconductors in detail. The Hall coefficient (RH) of FeTe and Fe(Se1-xTex) exhibits a similar positive value around 300 K, indicating that the high-temperature normal state is dominated by hole-channel transport. FeTe exhibits a sign reversal from positive to negative across the transition to the low-temperature antiferromagnetic state, indicating the occurrence of drastic reconstruction in the band structure. The mobility analysis using the carrier density theoretically calculated reveals that the mobility of holes is strongly suppressed to zero, and hence the electric transport looks to be dominated by electrons. The Se substitution to Te suppresses the antiferromagnetic long-range order and induces superconductivity instead. The similar mobility analysis for Fe(Se0.4Te0.6) and Fe(Se0.5Te0.5) thin films shows that the mobility of electrons increases with decreasing temperature even in the paramagnetic state, and keeps sufficiently high values down to the superconducting transition temperature. From the comparison between FeTe and Fe(Se1-xTex), it is suggested that the coexistence of itinerant carriers both in electron and hole channels is indispensable for the occurrence of superconductivity.
We have epitaxially grown c-axis oriented SrxLa1-xCuO2 thin films by rf sputtering on KTaO3 substrates with x = 0.12. The as-grown deposits are insulating and a series of superconducting films with various Tc(R=0) up to 26 K have been obtained by in- situ oxygen reduction. Transport measurements in the ab plane of these samples have been undertaken. We report original results on the temperature dependence of the Hall effect and on the anisotropic magnetoresistance (T > Tc). We discuss the magnitude of upper critical fields and anisotropy, the Hall effect, which presents changes of sign indicative of the existence of two types of carriers, the normal state magnetoresistance, negative in parallel magnetic field, a possible signature of spin scattering. These properties are compared to those of hole-doped cuprates, such as BiSr(La)CuO with comparable Tc.
We study experimentally the critical depinning current Ic versus applied magnetic field B in Nb thin films which contain 2D arrays of circular antidots placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to the transition tempe rature Tc we observe matching of the vortex lattice with the QP pinning array, confirming essential features in the Ic(B) patterns as predicted by Misko et al. [Phys. Rev. Lett, vol.95, 177007 (2005)]. We find a significant enhancement in Ic(B) for QP pinning arrays in comparison to Ic in samples with randomly distributed antidots or no antidots.
Flux penetrations into three-dimensional Nb superconducting strip arrays, where two layers of strip arrays are stacked by shifting a half period, are studied using a magneto-optical imaging method. Flux avalanches are observed when the overlap betwee n the top and bottom layers is large even if the width of each strip is well below the threshold value. In addition, anomalous linear avalanches perpendicular to the strip are observed in the shifted strip array when the overlap is very large and the thickness of the superconductor is greater than the penetration depth. We discuss possible origins for the flux avalanches, including linear ones, by considering flux penetration calculated by the Campbell method assuming the Bean model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا