ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Transient Radio Sky with VLITE: Early Results

213   0   0.0 ( 0 )
 نشر من قبل Emil Polisensky
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a search for radio transients at 340 MHz with the Jansky Very Large Array (VLA) Low band Ionospheric and Transient Experiment (VLITE). Between 2015 July 29 and 2015 September 27, operating in commensal mode, VLITE imaged approximately 2800 pointings covering 12,000 deg$^2$ on the sky, sampling timescales ranging from tens of seconds to several hours on a daily basis. In addition, between 2015 February 25 and 2015 May 9, VLITE observed 55 epochs of roughly 2-4 hours each toward the COSMOS field. Using existing radio source catalogs we have searched all the daily VLITE images for transients, while for the COSMOS field we compared individual images and the summed image to search for new sources in repeated observations of the same field. The wide range of timescales makes VLITE sensitive to both coherent and incoherent transient source classes. No new transients are found, allowing us to set stringent upper limits on transients at milliJansky levels and at low frequencies where comparatively few such surveys have been carried out to date. An all-sky isotropic rate of bursting radio transients with similar rates, duration, and intensity as the unusual transient GCRT J1745$-$3009, discovered in wide-field monitoring toward the Galactic center, is ruled out with high confidence. The resulting non-detections allows us to argue that this is a coherent source, whose properties most resemble the growing class of nulling pulsars. We end with a discussion of the future prospects for the detection of transients by VLITE and other experiments.



قيم البحث

اقرأ أيضاً

Temporal variability in flux and spectral shape is ubiquitous in the X-ray sky and carries crucial information about the nature and emission physics of the sources. The EPIC instrument on board the XMM-Newton observatory is the most powerful tool for studying variability even in faint sources. Each day, it collects a large amount of information about hundreds of new serendipitous sources, but the resulting huge (and growing) dataset is largely unexplored in the time domain. The project called Exploring the X-ray transient and variable sky (EXTraS) systematically extracted all temporal domain information in the XMM-Newton archive. This included a search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight orders of magnitude in timescale and six orders of magnitude in flux, and a search for fast transients that were missed by standard image analysis. All results, products, and software tools have been released to the community in a public archive. A science gateway has also been implemented to allow users to run the EXTraS analysis remotely on recent XMM datasets. We give details on the new algorithms that were designed and implemented to perform all steps of EPIC data analysis, including data preparation, source and background modelling, generation of time series and power spectra, and search for and characterisation of different types of variabilities. We describe our results and products and give information about their basic statistical properties and advice on their usage. We also describe available online resources. The EXTraS database of results and its ancillary products is a rich resource for any kind of investigation in almost all fields of astrophysics. Algorithms and lessons learnt from our project are also a very useful reference for any current and future experiment in the time domain.
We present the results of the first transient survey from the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) using 31 hr of data, in which we place the most constraining limits on the instantaneous transient surface density at timesc ales of 13 s to a few minutes and at frequencies below 100 MHz. The OVRO-LWA is a dipole array that images the entire viewable hemisphere with 58 MHz of bandwidth from 27 to 84 MHz at 13 s cadence. No transients are detected above a 6.5$sigma$ flux density limit of 10.5 Jy, implying an upper limit to the transient surface density of $2.5times10^{-8}$ deg$^{-2}$ at the shortest timescales probed, which is orders of magnitude deeper than has been achieved at sub-100 MHz frequencies and comparable flux densities to date. The nondetection of transients in the OVRO-LWA survey, particularly at minutes-long timescales, allows us to place further constraints on the rate of the potential population of transients uncovered by Stewart et al. (2016). From their transient rate, we expect a detection of $8.4^{+31.8}_{-8.0}$ events, and the probability of our null detection is $1.9^{+644}_{-1.9}times10^{-3}$, ruling out a transient rate $>1.4times10^{-4} text{days}^{-1} text{deg}^{-2}$ with 95% confidence at a flux density limit of 18.1 Jy, under the assumption of a flat spectrum and wide bandwidth. We discuss the implications of our nondetection for this population and further constraints that can be made on the source spectral index, intrinsic emission bandwidth, and resulting luminosity distribution.
The study of stripped-envelope core-collapse supernovae (SNe), with evidence for strong interaction of SN ejecta with the circumstellar medium (CSM), provides insights into the pre-supernova progenitor, and a fast-forwarded view of the progenitor mas s-loss history. In this context, we present late-time radio observations of SN2004dk, a type Ibc supernova located in the galaxy, NGC 6118, at a distance of $d_L approx 23$ Mpc. About 15 years after explosion, SN2004dk has shown evidence for H$alpha$ emission, possibly linked to the SN ejecta interacting with an H-rich CSM. Using data from the VLA Low Band Ionosphere and Transient Experiment (VLITE), we confirm the presence of a late-time radio re-brightening accompanying the observed H$alpha$ emission. We model the SN2004dk radio light curves within the (spherically symmetric) synchrotron-self-absorption (SSA) model. Within this model, our VLITE observations combined with previously collected VLA data favor an interpretation of SN2004dk as a strongly CSM-interacting radio SN going through a complex environment shaped by a non-steady mass-loss from the SN progenitor.
140 - Tracy Clarke 2016
The US Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) have collaborated to develop, install, and commission a new commensal system on the Karl G. Jansky Very Large Array (VLA). The VLA Low Band Ionospheric and Tra nsient Experiment (VLITE) makes use of dedicated samplers and fibers to tap the signal from 10 VLA low band receivers and correlate those through a real-time DiFX correlator. VLITE allows for the simultaneous use of the VLA to observe primary science using the higher frequencies receivers (1-50 GHz) through the NRAO WIDAR correlator and lower frequencies through the DiFX correlator. VLITE operates during nearly all observing programs and provides 64 MHz of bandwidth centered at 352 MHz. The operation of VLITE requires no additional resources from the VLA system running the primary science and produces an ad-hoc sky survey. The commensal system greatly expands the capabilities of the VLA through value-added PI science, stand-alone astrophysics, the opening of a new window on transient searches, and serendipity. In the first year of operation we have recorded more than 6300 hours spread across the sky. We present an overview of the VLITE program, discuss the sky coverage and depth obtained during the first year of operation, and briefly outline the astrophysics and transients programs.
67 - M. Caleb , C. Flynn , M. Bailes 2016
We report the first radio interferometric search at 843 MHz for fast transients, particularly Fast Radio Bursts (FRBs). The recently recommissioned Swinburne University of Technologys digital backend for the Molonglo Observatory Synthesis Telescope a rray (the UTMOST) with its large collecting area (18,000 $mathrm{m^2}$) and wide instantaneous field of view (7.80 $mathrm{deg^2}$) is expected to be an efficient tool to detect FRBs. As an interferometer it will be capable of discerning whether the FRBs are truly a celestial population. We show that UTMOST at full design sensitivity can detect an event approximately every few days. We report on 2 preliminary FRB surveys at about 7% and 14% respectively of the arrays final sensitivity. Several pulsars have been detected via single pulses and no FRBs were discovered with pulse widths ($W$), in the range 655.36 $mu$s $< W < 41.9$ ms and dispersion measures (DMs) in the range $100 < $DM$< 2000$ $mathrm{pc,cm^{-3}}$. This non-detection sets a 2$sigma$ upper limit of the sky rate of not more than 1000 events $mathrm{sky^{-1}}$ $mathrm{day^{-1}}$ at 843 MHz down to a flux limit of 11 Jy for 1 ms FRBs. We show that this limit is consistent with previous survey limits at 1.4 GHz and 145 MHz and set a lower limit on the mean spectral index of FRBs of $alpha > -3.2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا