ﻻ يوجد ملخص باللغة العربية
The US Naval Research Laboratory (NRL) and the National Radio Astronomy Observatory (NRAO) have collaborated to develop, install, and commission a new commensal system on the Karl G. Jansky Very Large Array (VLA). The VLA Low Band Ionospheric and Transient Experiment (VLITE) makes use of dedicated samplers and fibers to tap the signal from 10 VLA low band receivers and correlate those through a real-time DiFX correlator. VLITE allows for the simultaneous use of the VLA to observe primary science using the higher frequencies receivers (1-50 GHz) through the NRAO WIDAR correlator and lower frequencies through the DiFX correlator. VLITE operates during nearly all observing programs and provides 64 MHz of bandwidth centered at 352 MHz. The operation of VLITE requires no additional resources from the VLA system running the primary science and produces an ad-hoc sky survey. The commensal system greatly expands the capabilities of the VLA through value-added PI science, stand-alone astrophysics, the opening of a new window on transient searches, and serendipity. In the first year of operation we have recorded more than 6300 hours spread across the sky. We present an overview of the VLITE program, discuss the sky coverage and depth obtained during the first year of operation, and briefly outline the astrophysics and transients programs.
We report on a search for radio transients at 340 MHz with the Jansky Very Large Array (VLA) Low band Ionospheric and Transient Experiment (VLITE). Between 2015 July 29 and 2015 September 27, operating in commensal mode, VLITE imaged approximately 28
The Transient Optical Sky Survey (TOSS) is an automated, ground-based telescope system dedicated to searching for optical transient events. Small telescope tubes are mounted on a tracking, semi-equatorial frame with a single polar axis. Each fixed de
We present a survey of the radio sky accessible from the first station of the Long Wavelength Array (LWA1). Images are presented at nine frequencies between 35 and 80 MHz with spatial resolutions ranging from $4.7^circ$ to $2.0^circ$, respectively. T
Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a s
The C-Band All-Sky Survey (C-BASS) is an all-sky full-polarization survey at a frequency of 5 GHz, designed to provide data complementary to the all-sky surveys of WMAP and Planck and future CMB B-mode polarization imaging surveys. We describe the de