ترغب بنشر مسار تعليمي؟ اضغط هنا

Risk Measures on $mathcal{P}(mathbb{R})$ and Value At Risk with Probability/Loss function

258   0   0.0 ( 0 )
 نشر من قبل Marco Maggis Doctor
 تاريخ النشر 2012
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a generalization of the classical notion of the $V@R_{lambda}$ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of law invariant risk measures based on an appropriate family of acceptance sets. The $V@R_{lambda}$ and other known law invariant risk measures turn out to be special cases of our proposal. We further prove the dual representation of Risk Measures on $mathcal{P}(% mathbb{R}).$



قيم البحث

اقرأ أيضاً

This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency pro perties of dynamic risk measures in terms of acceptance sets, penalty functions, and by supermartingale properties of risk processes and penalty functions.
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a Knightian setting, where a family of probability measures replaces the single reference probability and is then applied to value financial positions. Diametrically, our construction of Value&Risk measures is based on the selection of a basket of claims to test the reliability of models. We compare a random payoff $X$ with a given class of derivatives written on $X$ , and use these derivatives to textquotedblleft testtextquotedblright the pricing measures. We further introduce and study a general class of Value&Risk measures $% R(p,X,mathbb{P})$ that describes the additional capital that is required to make $X$ acceptable under a probability $mathbb{P}$ and given the initial price $p$ paid to acquire $X$.
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $varphi(mathbf X)$ where $varphi$ is an aggregation function and $mathbf X = (X_1,dots,X_d)$ is a random vector with known marginal distributions and partially kno wn dependence structure. More specifically, we analyze three types of available information on the dependence structure: First, we consider the case where extreme value information, such as the distributions of partial minima and maxima of $mathbf X$, is available. In order to include this information in the computation of Value-at-Risk bounds, we utilize a reduction principle that relates this problem to an optimization problem over a standard Frechet class, which can then be solved by means of the rearrangement algorithm or using analytical results. Second, we assume that the copula of $mathbf X$ is known on a subset of its domain, and finally we consider the case where the copula of $mathbf X$ lies in the vicinity of a reference copula as measured by a statistical distance. In order to derive Value-at-Risk bounds in the latter situations, we first improve the Frechet--Hoeffding bounds on copulas so as to include this additional information on the dependence structure. Then, we translate the improved Frechet--Hoeffding bounds to bounds on the Value-at-Risk using the so-called improved standard bounds. In numerical examples we illustrate that the additional information typically leads to a significant improvement of the bounds compared to the marginals-only case.
178 - A. Jobert , L. C. G. Rogers 2007
This paper approaches the definition and properties of dynamic convex risk measures through the notion of a family of concave valuation operators satisfying certain simple and credible axioms. Exploring these in the simplest context of a finite time set and finite sample space, we find natural risk-transfer and time-consistency properties for a firm seeking to spread its risk across a group of subsidiaries.
114 - Daniel Lacker 2015
Expanding on techniques of concentration of measure, we develop a quantitative framework for modeling liquidity risk using convex risk measures. The fundamental objects of study are curves of the form $(rho(lambda X))_{lambda ge 0}$, where $rho$ is a convex risk measure and $X$ a random variable, and we call such a curve a emph{liquidity risk profile}. The shape of a liquidity risk profile is intimately linked with the tail behavior of the underlying $X$ for some notable classes of risk measures, namely shortfall risk measures. We exploit this link to systematically bound liquidity risk profiles from above by other real functions $gamma$, deriving tractable necessary and sufficient conditions for emph{concentration inequalities} of the form $rho(lambda X) le gamma(lambda)$, for all $lambda ge 0$. These concentration inequalities admit useful dual representations related to transport inequalities, and this leads to efficient uniform bounds for liquidity risk profiles for large classes of $X$. On the other hand, some modest new mathematical results emerge from this analysis, including a new characterization of some classical transport-entropy inequalities. Lastly, the analysis is deepened by means of a surprising connection between time consistency properties of law invariant risk measures and the tensorization of concentration inequalities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا