ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of photo-neutralization on the emission properties of quantum dots

110   0   0.0 ( 0 )
 نشر من قبل Tobias Huber
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate the coherence properties of a quantum dot under two-photon resonant excitation in combination with an additional photo-neutralization laser. The photo-neutralization increases the efficiency of the excitation process and thus, the brightness of the source, by a factor of approximately 1.5 for biexciton-exciton pairs. This enhancement does not degrade the relevant coherences in the system; neither the single photon coherence time, nor the coherence of the excitation process.



قيم البحث

اقرأ أيضاً

Generation and manipulation of the quantum state of a single photon is at the heart of many quantum information protocols. There has been growing interest in using phase modulators as quantum optics devices that preserve coherence. In this Letter, we have used an electro-optic phase modulator to shape the state vector of single photons emitted by a quantum dot to generate new frequency components (modes) and explicitly demonstrate that the phase modulation process agrees with the theoretical prediction at a single photon level. Through two-photon interference measurements we show that for an output consisting of three modes (the original mode and two sidebands), the indistinguishability of the mode engineered photon, measured through the secondorder intensity correlation (g2(0)) is preserved. This work demonstrates a robust means to generate a photonic qubit or more complex state (e.g., a qutrit) for quantum communication applications by encoding information in the sidebands without the loss of coherence.
A study of highly symmetric site-controlled Pyramidal In0.25Ga0.75As quantum dots (QDs) is presented. It is discussed that polarization-entangled photons can be also obtained from Pyramidal QDs of different designs from the one already reported in Ju ska et al. (Nat. Phot. 7, 527, 2013). Moreover, some of the limitations for a higher density of entangled photon emitters are addressed. Among these issues are (1) a remaining small fine-structure splitting and (2) an effective QD charging under non-resonant excitation conditions, which strongly reduce the number of useful biexciton-exciton recombination events. A possible solution of the charging problem is investigated exploiting a dual-wavelength excitation technique, which allows a gradual QD charge tuning from strongly negative to positive and, eventually, efficient detection of entangled photons from QDs, which would be otherwise ineffective under a single-wavelength (non-resonant) excitation.
Efficient all-photonic quantum teleportation requires fast and deterministic sources of highly indistinguishable and entangled photons. Solid-state-based quantum emitters--notably semiconductor quantum dots--are a promising candidate for the role. Ho wever, despite the remarkable progress in nanofabrication, proof-of-concept demonstrations of quantum teleportation have highlighted that imperfections of the emitter still place a major roadblock in the way of applications. Here, rather than focusing on source optimization strategies, we deal with imperfections and study different teleportation protocols with the goal of identifying the one with maximal teleportation fidelity. Using a quantum dot with sub-par values of entanglement and photon indistinguishability, we show that the average teleportation fidelity can be raised from below the classical limit to 0.842(14). Our results, which are backed by a theoretical model that quantitatively explains the experimental findings, loosen the very stringent requirements set on the ideal entangled-photon source and highlight that imperfect quantum dots can still have a say in teleportation-based quantum communication architectures.
We implement a technique for measuring the singlet-triplet energy splitting responsible for spin-to-charge conversion in semiconductor quantum dots. This method, which requires fast, single-shot charge measurement, reliably extracts an energy in the limits of both large and small splittings. We perform this technique on an undoped, accumulation-mode Si/SiGe triple-quantum dot and find that the measured splitting varies smoothly as a function of confinement gate biases. Not only does this demonstration prove the value of having an $in~situ$ excited-state measurement technique as part of a standard tune-up procedure, it also suggests that in typical Si/SiGe quantum dot devices, spin-blockade can be limited by lateral orbital excitation energy rather than valley splitting.
We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emi tter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally applying this theoretical framework to the case of currently available solid-state quantum dots in micro-cavities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا