ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Dynamics of Two Independent Cavity-Embedded Quantum Dots

132   0   0.0 ( 0 )
 نشر من قبل Bruno Bellomo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally applying this theoretical framework to the case of currently available solid-state quantum dots in micro-cavities.



قيم البحث

اقرأ أيضاً

We show unusual cooperative two-photon resonance between two-modes of field inside a photonic crystal cavity. The two-photon resonance occurs when two off resonant quantum dots emit one photon in each cavity mode and de-excite simultaneously. In the presence of phonon coupling the conditions for two-photon resonance change significantly. Using such two-photon two-mode interaction we propose to generate entangled state of two qutrits. The basis of a qutrit are formed by the state of the cavity mode containing $0$, $1$ and $2$ photons. We also discuss effect of phonon coupling on negativity of the generated entangled state.
97 - John H. Reina , 1999
We show how optically-driven coupled quantum dots can be used to prepare maximally entangled Bell and Greenberger-Horne-Zeilinger states. Manipulation of the strength and duration of the selective light-pulses needed for producing these highly entang led states provides us with crucial elements for the processing of solid-state based quantum information. Theoretical predictions suggest that several hundred single quantum bit rotations and Controlled-Not gates could be performed before decoherence of the excitonic states takes place.
Recent studies show that hybrid quantum systems based on magnonics provide a new and promising platform for generating macroscopic quantum states involving a large number of spins. Here we show how to entangle two magnon modes in two massive yttrium- iron-garnet (YIG) spheres using cavity optomagnonics, where magnons couple to high-quality optical whispering gallery modes supported by the YIG sphere. The spheres can be as large as 1 mm in diameter and each sphere contains more than $10^{18}$ spins. The proposal is based on the asymmetry of the Stokes and anti-Stokes sidebands generated by the magnon-induced Brillouin light scattering in cavity optomagnonics. This allows one to utilize the Stokes and anti-Stokes scattering process, respectively, for generating and verifying the entanglement. Our work indicates that cavity optomagnonics could be a promising system for preparing macroscopic quantum states.
196 - Y. Benny , Y. Kodriano , E. Poem 2011
We present experimental and theoretical study of single semiconductor quantum dots excited by two non-degenerate, resonantly tuned variably polarized lasers. The first laser is tuned to excitonic resonances. Depending on its polarization it photogene rates a coherent single exciton state. The second laser is tuned to biexciton resonances. By scanning the energy of the second laser for various polarizations of the two lasers, while monitoring the emission from the biexciton and exciton spectral lines, we map the biexciton photoluminescence excitation spectra. The resonances rich spectra of the second photon absorption are analyzed and fully understood in terms of a many carrier theoretical model which takes into account the direct and exchange Coulomb interactions between the quantum confined carriers.
We show that two initially non-resonant quantum dots may be brought into resonance by the application of a single detuned laser. This allows for control of the inter-dot interactions and the generation of highly entangled excitonic states on the pico second timescale. Along with arbitrary single qubit manipulations, this system would be sufficient for the demonstration of a prototype excitonic quantum computer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا