ﻻ يوجد ملخص باللغة العربية
Traffic load balancing and radio resource management is key to harness the dense and increasingly heterogeneous deployment of next generation $5$G wireless infrastructure. Strategies for aggregating user traffic from across multiple radio access technologies (RATs) and/or access points (APs) would be crucial in such heterogeneous networks (HetNets), but are not well investigated. In this paper, we develop a low complexity solution for maximizing an $alpha$-optimal network utility leveraging the multi-link aggregation (simultaneous connectivity to multiple RATs/APs) capability of users in the network. The network utility maximization formulation has maximization of sum rate ($alpha=0$), maximization of minimum rate ($alpha to infty$), and proportional fair ($alpha=1$) as its special cases. A closed form is also developed for the special case where a user aggregates traffic from at most two APs/RATs, and hence can be applied to practical scenarios like LTE-WLAN aggregation (LWA) and LTE dual-connectivity solutions. It is shown that the required objective may also be realized through a decentralized implementation requiring a series of message exchanges between the users and network. Using comprehensive system level simulations, it is shown that optimal leveraging of multi-link aggregation leads to substantial throughput gains over single RAT/AP selection techniques.
Traffic load balancing and resource allocation is set to play a crucial role in leveraging the dense and increasingly heterogeneous deployment of multi-radio wireless networks. Traffic aggregation across different access points (APs)/radio access tec
We consider the problem of efficient packet dissemination in wireless networks with point-to-multi-point wireless broadcast channels. We propose a dynamic policy, which achieves the broadcast capacity of the network. This policy is obtained by first
Future wireless networks will be characterized by heterogeneous traffic requirements. Such requirements can be low-latency or minimum-throughput. Therefore, the network has to adjust to different needs. Usually, users with low-latency requirements ha
We study and compare three coded schemes for single-server wireless broadcast of multiple description coded content to heterogeneous users. The users (sink nodes) demand different number of descriptions over links with different packet loss rates. Th
Cell association scheme determines which base station (BS) and mobile user (MU) should be associated with and also plays a significant role in determining the average data rate a MU can achieve in heterogeneous networks. However, the explosion of dig