ﻻ يوجد ملخص باللغة العربية
We report an experimental and theoretical investigation of the lattice dynamics and thermal properties of the actinide dioxide NpO$_2$. The energy-wavevector dispersion relation for normal modes of vibration propagating along the $[001]$, $[110]$, and $[111]$ high-symmetry lines in NpO$_2$ at room temperature has been determined by measuring the coherent one-phonon scattering of X-rays from a $sim$1.2 mg single-crystal specimen, the largest available single crystal for this compound. The results are compared against ab initio phonon dispersions computed within the first-principles density functional theory in the generalized gradient approximation plus Hubbard $U$ correlation (GGA+$U$) approach, taking into account third-order anharmonicity effects in the quasiharmonic approximation. Good agreement with the experiment is obtained for calculations with an on-site Coulomb parameter $U = 4$ eV and Hunds exchange $J= 0.6$ eV in line with previous electronic structure calculations. We further compute the thermal expansion, heat capacity, thermal conductivity, phonon linewidth, and thermal phonon softening, and compare with available experiments. The theoretical and measured heat capacities are in close agreement with another. About 27% of the calculated thermal conductivity is due to phonons with energy higher than 25 meV ($sim$ 6 THz ), suggesting an important role of high-energy optical phonons in the heat transport. The simulated thermal expansion reproduces well the experimental data up to about 1000 K, indicating a failure of the quasiharmonic approximation above this limit.
We provide a first-principle, materials-specific theory of multipolar order and superexchange in NpO$_2$ by means of a non-collinear local-density approximation +$U$ (LDA+$U$) method. Our calculations offer a precise microscopic description of the tr
We have investigated the grain boundary scattering effect on the thermal transport behavior of uranium dioxide (UO$_2$). The polycrystalline samples having different grain-sizes (0.125, 1.8, and 7.2 $mu$m) have been prepared by spark plasma sintering
We report on the crystal structure, magnetic susceptibility, specific heat, electrical and thermoelectrical properties of AmPd5Al2, the americium counterpart of the unconventional superconductor NpPd5Al2. AmPd5Al2 crystallizes in the ZrNi2Al5-type of
In recent years, there has been an intense interest in understanding the microscopic mechanism of thermally induced magnetization switching driven by a femtosecond laser pulse. Most of the effort has been dedicated to periodic crystalline structures
In the exploration of new osmium based double perovskites, Sr2FeOsO6 is a new insertion in the existing family. The polycrystalline compound has been prepared by solid state synthesis from the respective binary oxides. PXRD analysis shows the structu