ﻻ يوجد ملخص باللغة العربية
We have investigated the grain boundary scattering effect on the thermal transport behavior of uranium dioxide (UO$_2$). The polycrystalline samples having different grain-sizes (0.125, 1.8, and 7.2 $mu$m) have been prepared by spark plasma sintering technique and characterized by x-ray powder diffraction (XRD), scanning electron microscope (SEM), and Raman spectroscopy. The thermal transport properties (the thermal conductivity and thermoelectric power) have been measured in the temperature range 2-300~K and the results were analyzed in terms of various physical parameters contributing to the thermal conductivity in these materials in relation to grain-size. We show that thermal conductivity decreases systematically with lowering grain-size in the temperatures below 30 K, where the boundary scattering dominates the thermal transport. At higher temperatures more scattering processes are involved in the heat transport in these materials, making the analysis difficult. We determined the grain boundary Kapitza resistance that would result in the observed increase in thermal conductivity with grain size, and compared the value with Kapitza resistances calculated for UO$_2$ using molecular dynamics from the literature.
Uranium mononitride, UN, is considered a potential accident tolerant fuel due to its high uranium density, high thermal conductivity, and high melting point. Compared with the relatively inert UO2, UN has a high reactivity in water, however, studies
We study the size dependence of thermal conductivity in nanoscale semiconducting systems. An analytical formula including the surface scattering and the size confinement effects of phonon transport is derived. The theoretical formula gives good agree
D. J. Antonio et al. report an x-ray diffraction experiment on uranium dioxide at high-magnetic field and low temperature. The authors have apparently not realized that the diffraction data actually shows unambiguously the presence of a rhombohedral
Thermoelectric properties of polycrystalline p-type ZrTe5 are reported in temperature (T) range 2 - 340 K. Thermoelectric power (S) is positive and reaches up to 458 uV/K at 340 K on increasing T. The value of Fermi energy 16 meV, suggests low carrie
The anomalous Hall effect (AHE) has been studied systematically in the low-conductivity ferromagnetic oxide Fe$_{3-x}$Zn$_x$O$_4$ with $x = 0$, 0.1, and 0.5. We used (001), (110), and (111) oriented epitaxial Fe$_{3-x}$Zn$_x$O$_4$ films grown on MgO