ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a new symmetry breaking mechanism reorienting quantum Hall nematics

249   0   0.0 ( 0 )
 نشر من قبل Michael A. Zudov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the effect of in-plane magnetic field $B_parallel$ on stripe phases in higher ($N=2,3$) Landau levels of a high-mobility 2D electron gas. In accord with previous studies, we find that a modest $B_parallel$ applied parallel to the native stripes aligns them perpendicular to it. However, upon further increase of $B_parallel$, stripes are reoriented back to their native direction. Remarkably, applying $B_parallel$ perpendicular to the native stripes also aligns stripes parallel to it. Thus, regardless of the initial orientation of stripes with respect to $B_parallel$, stripes are ultimately aligned emph{parallel} to $B_parallel$. These findings provide evidence for a $B_parallel$-induced symmetry breaking mechanism which challenge current understanding of the role of $B_parallel$ and should be taken into account when determining the strength of the native symmetry breaking potential. Finally, our results might indicate nontrivial coupling between the native and external symmetry breaking fields, which has not yet been theoretically considered.



قيم البحث

اقرأ أيضاً

Two-dimensional electron gases in strong magnetic fields provide a canonical platform for realizing a variety of electronic ordering phenomena. Here we review the physics of one intriguing class of interaction-driven quantum Hall states: quantum Hall valley nematics. These phases of matter emerge when the formation of a topologically insulating quantum Hall state is accompanied by the spontaneous breaking of a point-group symmetry that combines a spatial rotation with a permutation of valley indices. The resulting orientational order is particularly sensitive to quenched disorder, while quantum Hall physics links charge conduction to topological defects. We discuss how these combine to yield a rich phase structure, and their implications for transport and spectroscopy measurements. In parallel, we discuss relevant experimental systems. We close with an outlook on future directions.
Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires, and graphene. Recently, a new paradi gm has emerged with the advent of symmetry-protected surface states on the boundary of topological insulators, enabling the creation of electronic systems with novel properties. For example, time reversal symmetry (TRS) endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, locking the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations of the one-dimensional boundary states of a two-dimensional topological insulator are also possible, but have yet to be observed in the leading candidate materials. Here, we demonstrate experimentally that charge neutral monolayer graphene displays a new type of quantum spin Hall (QSH) effect, previously thought to exist only in TRS topological insulators, when it is subjected to a very large magnetic field angled with respect to the graphene plane. Unlike in the TRS case, the QSH presented here is protected by a spin-rotation symmetry that emerges as electron spins in a half-filled Landau level are polarized by the large in-plane magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic (CAF) state, we observe transport signatures of gapped edge states, which constitute a new kind of one-dimensional electronic system with tunable band gap and associated spin-texture.
Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. We investigate such a bilayer in an external magnetic field. We show that the interlayer correlations lead to formation of a helical quantum Hall exciton condensate state. In contrast to the chiral edge states of the quantum Hall exciton condensate in electron-electron bilayers, existence of the counterpropagating edge modes results in formation of a ground state spin-texture not supporting gapless single-particle excitations. This feature has deep consequences for the low energy behavior of the system. Namely, the charged edge excitations in a sufficiently narrow Hall bar are confined, i.e.~a charge on one of the edges always gives rise to an opposite charge on the other edge. Moreover, we show that magnetic field and gate voltages allow to control confinement-deconfinement transition of charged edge excitations, which can be probed with nonlocal conductance. Confinement-deconfinement transitions are of great interest, not least because of their possible significance in shedding light on the confinement problem of quarks.
We consider domain walls in nematic quantum Hall ferromagnets predicted to form in multivalley semiconductors, recently probed by scanning tunnelling microscopy experiments on Bi(111) surfaces. We show that the domain wall properties depend sensitive ly on the filling factor $ u$ of the underlying (integer) quantum Hall states. For $ u=1$ and in the absence of impurity scattering we argue that the wall hosts a single-channel Luttinger liquid whose gaplessness is a consequence of valley and charge conservation. For $ u=2$, it supports a two-channel Luttinger liquid, which for sufficiently strong interactions enters a symmetry-preserving thermal metal phase with a charge gap coexisting with gapless neutral intervalley modes. The domain wall physics in this state is identical to that of a bosonic topological insulator protected by $U(1)times U(1)$ symmetry, and we provide a formal mapping between these problems. We discuss other unusual properties and experimental signatures of these `anomalous one-dimensional systems.
The low-energy excitations of graphene are relativistic massless Dirac fermions with opposite chiralities at valleys K and K. Breaking the chiral symmetry could lead to gap opening in analogy to dynamical mass generation in particle physics. Here we report direct experimental evidences of chiral symmetry breaking (CSB) from both microscopic and spectroscopic measurements in a Li-intercalated graphene. The CSB is evidenced by gap opening at the Dirac point, Kekule-O type modulation, and chirality mixing near the gap edge. Our work opens up opportunities for investigating CSB related physics in a Kekule-ordered graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا