ترغب بنشر مسار تعليمي؟ اضغط هنا

Topology- and symmetry-protected domain wall conduction in quantum Hall nematics

52   0   0.0 ( 0 )
 نشر من قبل Kartiek Agarwal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider domain walls in nematic quantum Hall ferromagnets predicted to form in multivalley semiconductors, recently probed by scanning tunnelling microscopy experiments on Bi(111) surfaces. We show that the domain wall properties depend sensitively on the filling factor $ u$ of the underlying (integer) quantum Hall states. For $ u=1$ and in the absence of impurity scattering we argue that the wall hosts a single-channel Luttinger liquid whose gaplessness is a consequence of valley and charge conservation. For $ u=2$, it supports a two-channel Luttinger liquid, which for sufficiently strong interactions enters a symmetry-preserving thermal metal phase with a charge gap coexisting with gapless neutral intervalley modes. The domain wall physics in this state is identical to that of a bosonic topological insulator protected by $U(1)times U(1)$ symmetry, and we provide a formal mapping between these problems. We discuss other unusual properties and experimental signatures of these `anomalous one-dimensional systems.



قيم البحث

اقرأ أيضاً

Two-dimensional electron gases in strong magnetic fields provide a canonical platform for realizing a variety of electronic ordering phenomena. Here we review the physics of one intriguing class of interaction-driven quantum Hall states: quantum Hall valley nematics. These phases of matter emerge when the formation of a topologically insulating quantum Hall state is accompanied by the spontaneous breaking of a point-group symmetry that combines a spatial rotation with a permutation of valley indices. The resulting orientational order is particularly sensitive to quenched disorder, while quantum Hall physics links charge conduction to topological defects. We discuss how these combine to yield a rich phase structure, and their implications for transport and spectroscopy measurements. In parallel, we discuss relevant experimental systems. We close with an outlook on future directions.
We investigate topological signatures in the short-time non-equilibrium dynamics of symmetry protected topological (SPT) systems starting from initial states which break the protecting symmetry. Naively, one might expect that topology loses meaning w hen a protecting symmetry is broken. Defying this intuition, we illustrate, in an interacting Su-Schrieffer-Heeger (SSH) model, how this combination of symmetry breaking and quench dynamics can give rise to both single-particle and many-body signatures of topology. From the dynamics of the symmetry broken state, we find that we are able to dynamically probe the equilibrium topological phase diagram of a symmetry respecting projection of the post-quench Hamiltonian. In the ensemble dynamics, we demonstrate how spontaneous symmetry breaking (SSB) of the protecting symmetry can result in a quantized many-body topological `invariant which is not pinned under unitary time evolution. We dub this `dynamical many-body topology (DMBT). We show numerically that both the pure state and ensemble signatures are remarkably robust, and argue that these non-equilibrium signatures should be quite generic in SPT systems, regardless of protecting symmetries or spatial dimension.
We report full vector mapping of local magnetization in CeAlSi, a Weyl semimetal in which both inversion and time-reversal symmetries are broken. The vector maps reveal unanticipated features both within domains and at their boundaries. Boundaries be tween domains form two kinds of walls with distinct topology and therefore different interactions with Weyl fermions. Domain walls aligned along the tetragonal axes, e.g. (100), exhibit emergent chirality forbidden by the bulk space group, while diagonal walls are non-chiral. Within the domains, we observe that the previously reported set of four easy axes aligned along the in-plane diagonals of the tetragonal structure actually split to form an octet with decreasing temperature below the magnetic transition. All the above phenomena are ultimately traced to the noncollinear magnetic structure of CeAlSi.
Symmetry-protected trivial (SPt) phases of matter are the product-state analogue of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symme try. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to non-trivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses Matrix Product States (MPS) and the infinite Time-Evolving Block Decimation (iTEBD) method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by Conformal Field Theories (CFT) with central charge c=1. Our results are in agreement, and further generalize, those in [Y. Fuji, F. Pollmann, M. Oshikawa, Phys. Rev. Lett. 114, 177204 (2015)].
We introduce the concepts of a symmetry-protected sign problem and symmetry-protected magic to study the complexity of symmetry-protected topological (SPT) phases of matter. In particular, we say a state has a symmetry-protected sign problem or symme try-protected magic, if finite-depth quantum circuits composed of symmetric gates are unable to transform the state into a non-negative real wave function or stabilizer state, respectively. We prove that states belonging to certain SPT phases have these properties, as a result of their anomalous symmetry action at a boundary. For example, we find that one-dimensional $mathbb{Z}_2 times mathbb{Z}_2$ SPT states (e.g. cluster state) have a symmetry-protected sign problem, and two-dimensional $mathbb{Z}_2$ SPT states (e.g. Levin-Gu state) have both a symmetry-protected sign problem and symmetry-protected magic. We also comment on the relation of a symmetry-protected sign problem to the computational wire property of one-dimensional SPT states and speculate about the greater implications of our results for measurement-based quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا