ﻻ يوجد ملخص باللغة العربية
The million degree plasma of the solar corona must be supplied by the underlying layers of the atmosphere. The mechanism and location of energy release, and the precise source of coronal plasma, remain unresolved. In earlier work we pursued the idea that warm plasma is supplied to the corona via direct heating of the chromosphere by nanoflares, contrary to the prevailing belief that the corona is heated in-situ and the chromosphere is subsequently energized and ablated by thermal conduction. We found that single (low-frequency) chromospheric nanoflares could not explain the observed intensities, Doppler-shifts, and red/blue asymmetries in Fe XII and XIV emission lines. In the present work we follow up on another suggestion that the corona could be powered by chromospheric nanoflares that repeat on a timescale substantially shorter than the cooling/draining timescale. That is, a single magnetic strand is re-supplied with coronal plasma before the existing plasma has time to cool and drain. We perform a series of hydrodynamic experiments and predict the Fe XII and XIV line intensities, Doppler-shifts, and red/blue asymmetries. We find that our predicted quantities disagree dramatically with observations and fully developed loop structures cannot be created by intermediate- or high-frequency chromospheric nanoflares. We conclude that the mechanism ultimately responsible for producing coronal plasma operates above the chromosphere, but this does not preclude the possibility of a similar mechanism powering the chromosphere; extreme examples of which may be responsible for heating chromospheric plasma to transition region temperatures (e.g. type II spicules).
The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial (~0.3-0.4 arcsec) and temporal (5.5s) resolution. The Hi-C observations show in some moss regions variability on
The physical processes causing energy exchange between the Suns hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly
There is a wide consensus that the ubiquitous presence of magnetic reconnection events and the associated impulsive heating (nanoflares) is a strong candidate for solving the solar coronal heating problem. Whether nanoflares accelerate particles to h
We study dynamics of drift waves in the pair plasma of pulsar magnetosphere. It is shown that nonlinear of the drift waves with plasma particles leads to the formation of small scale structures. We show that cyclotron instability developed within the
We analyzed the occurrence rates of flares on stars of spectral types K, G, F, and A, observed by Kepler. We found that the histogram of occurrence frequencies of stellar flares is systematically shifted towards a high-energy tail for A-type stars co