ﻻ يوجد ملخص باللغة العربية
By means of first-principles calculations, we explore systematically the geometric, electronic and piezoelectric properties of multilayer SnSe. We find that these properties are layer-dependent, indicating that the interlayer interaction plays an important role. With increasing the number of SnSe layers from 1 to 6, we observe that the lattice constant decreases from 4.27 $mathring{A}$ to 4.22 $mathring{A}$ along zigzag direction, and increases from 4.41 $mathring{A}$ to 4.51 $mathring{A}$ along armchair direction close to the bulk limit (4.21 $mathring{A}$ and 4.52 $mathring{A}$, respectively); the band gap decreases from 1.45 eV to 1.08 eV, approaching the bulk gap 0.95 eV. Although the monolayer SnSe exhibits almost symmetric geometric and electronic structures along zigzag and armchair directions, bulk SnSe is obviously anisotropic, showing that the stacking of layers enhances the anisotropic character of SnSe. As bulk and even-layer SnSe have inversion centers, they cannot exhibit piezoelectric responses. However, we show that the odd-layer SnSe have piezoelectric coefficients much higher than those of the known piezoelectric materials, suggesting that the odd-layer SnSe is a good piezoelectric material.
We found that the electronic transport property of SnSe single crystals was sensitive to oxygen content. Semiconducting SnSe single crystals were obtained by using Sn of grain form as a starting material while powder Sn resulted in metallic SnSe. X-r
Two-dimensional van der Waals (2D vdW) materials that display ferromagnetism and piezoelectricity have received increased attention. Despite numerous 2D materials have so far been reported as ferromagnetic, developing an air stable and transferable v
We report first principle calculations of electronic and mechanical properties of few-layer borophene with the inclusion of interlayer van der Waals (vdW) interaction. The anisotropic metallic behaviors are preserved from monolayer to few-layer struc
We present results of electronic band structure, Fermi surface and electron transport properties calculations in orthorhombic $n$- and $p$-type SnSe, applying Korringa-Kohn-Rostoker method and Boltzmann transport approach. The analysis accounted for
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence ba