ﻻ يوجد ملخص باللغة العربية
We propose a new mass-mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. In order to preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass-mapping problem as a general ill-posed inverse problem, regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. We test our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion which are lost if only shear information is used. In particular, we can detect substructures at the 15$^{prime prime}$ scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass-mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse .
Gravitational lensing has long been considered as a valuable tool to determine the total mass of galaxy clusters. The shear profile as inferred from the statistics of ellipticity of background galaxies allows to probe the cluster intermediate and out
Current theories of structure formation predict specific density profiles of galaxy dark matter haloes, and with weak gravitational lensing we can probe these profiles on several scales. On small scales, higher-order shape distortions known as flexio
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image $sim$ 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to $rsim27.5$, with over 4 billion well measured galaxies.
3D data compression techniques can be used to determine the natural basis of radial eigenmodes that encode the maximum amount of information in a tomographic large-scale structure survey. We explore the potential of the Karhunen-Lo`eve decomposition
Metacalibration is a recently introduced method to accurately measure weak gravitational lensing shear using only the available imaging data, without need for prior information about galaxy properties or calibration from simulations. The method invol