ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Eckart Theorem and New Variation Method for Excited States of Atoms

56   0   0.0 ( 0 )
 نشر من قبل N. C. Bacalis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Zhuang Xiong




اسأل ChatGPT حول البحث

We extend the Eckart theorem, from the ground state to excited statew, which introduces an energy augmentation to the variation criterion for excited states. It is shown that the energy of a very good excited state trial function can be slightly lower than the exact eigenvalue. Further, the energy calculated by the trial excited state wave function, which is the closest to the exact eigenstate through Gram-Schmidt orthonormalization to a ground state approximant, is lower than the exact eigenvalue as well. In order to avoid the variation restrictions inherent in the upper bound variation theory based on Hylleraas, Undheim, and McDonald [HUM] and Eckart Theorem, we have proposed a new variation functional Omega-n and proved that it has a local minimum at the eigenstates, which allows approaching the eigenstate unlimitedly by variation of the trial wave function. As an example, we calculated the energy and the radial expectation values of Triplet-S(even) Helium atom by the new variation functional, and by HUM and Eckart theorem, respectively, for comparison. Our preliminary numerical results reveal that the energy of the calculated excited states 3rd Triplet-S(even) and 4th Triplet-S(even) may be slightly lower than the exact eigenvalue (inaccessible by HUM theory) according to the General Eckart Theorem proved here, while the approximate wave function is better than HUM.



قيم البحث

اقرأ أيضاً

Configuration-interaction-type calculations on electronic and vibrational structure are often the method of choice for the reliable approximation of many-particle wave functions and energies. The exponential scaling, however, limits their application range. An efficient approximation to the full configuration interaction solution can be obtained with the density matrix renormalization group (DMRG) algorithm without a restriction to a predefined excitation level. In a standard DMRG implementation, however, excited states are calculated with a ground-state optimization in the space orthogonal to all lower lying wave function solutions. A trivial parallelization is therefore not possible and the calculation of highly excited states becomes prohibitively expensive, especially in regions with a high density of states. Here, we introduce two variants of the density matrix renormalization group algorithm that allow us to target directly specific energy regions and therefore highly excited states. The first one, based on shift-and-invert techniques, is particularly efficient for low-lying states, but is not stable in regions with a high density of states. The second one, based on the folded auxiliary operator, is less efficient, but more accurate in targeting high-energy states. We apply the algorithm to the solution of the nuclear Schroedinger equation, but emphasize that it can be applied to the diagonalization of general Hamiltonians as well, such as the electronic Coulomb Hamiltonian to address X-ray spectra. In combination with several root-homing algorithms and a stochastic sampling of the determinant space, excited states of interest can be adequately tracked and analyzed during the optimization. We demonstrate that we can accurately calculate prominent spectral features of large molecules such as the sarcosyn-glycine dipeptide.
Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One example of such a hybrid quantum-classical approach is the variational quantum eigensolver (VQE) built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed among the candidates for first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even non-systematic decoherence errors by introducing an exactly solvable channel model of variational state preparation. Moreover, we show how variational quantum-classical approaches fit in a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions with additional classical resources. We demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error correction codes.
We present a new stochastic extended Lagrangian solution to charge equilibration that eliminates self-consistent field (SCF) calculations, eliminating the computational bottleneck in solving the many-body solution with standard SCF solvers. By formul ating both charges and chemical potential as latent variables, and introducing a holonomic constraint that satisfies charge conservation, the SC-XLMD method accurately reproduces structural, thermodynamic, and dynamics properties using ReaxFF, and shows excellent weak- and strong-scaling performance in the LAMMPS molecular simulation package.
QMCPACK is an open source quantum Monte Carlo package for ab-initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Car lo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wave functions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit (CPU) and graphical processing unit (GPU) systems. We detail the programs capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://www.qmcpack.org .
We present an efficient post-processing method for calculating the electronic structure of nanosystems based on the divide-and-conquer approach to density functional theory (DC-DFT), in which a system is divided into subsystems whose electronic struc ture is solved separately. In this post process, the Kohn-Sham Hamiltonian of the total system is easily derived from the orbitals and orbital energies of subsystems obtained by DC-DFT without time-consuming and redundant computation. The resultant orbitals spatially extended over the total system are described as linear combinations of the orbitals of the subsystems. The size of the Hamiltonian matrix can be much reduced from that for conventional calculation, so that our method is fast and applicable to general huge systems for investigating the nature of electronic states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا