ﻻ يوجد ملخص باللغة العربية
A new emph{S}-type eigenvalue localization set for tensors is derived by breaking $N={1,2,cdots,n}$ into disjoint subsets $S$ and its complement. It is proved that this new set is tighter than those presented by Qi (Journal of Symbolic Computation 40 (2005) 1302-1324), Li et al. (Numer. Linear Algebra Appl. 21 (2014) 39-50) and Li et al. (Linear Algebra Appl. 493 (2016) 469-483). As applications, checkable sufficient conditions for the positive definiteness and the positive semi-definiteness of tensors are proposed. Moreover, based on this new set, we establish a new upper bound for the spectral radius of nonnegative tensors and a lower bound for the minimum emph{H}-eigenvalue of weakly irreducible strong emph{M}-tensors in this paper. We demonstrate that these bounds are sharper than those obtained by Li et al. (Numer. Linear Algebra Appl. 21 (2014) 39-50) and He and Huang (J. Inequal. Appl. 114 (2014) 2014). Numerical examples are also given to illustrate this fact.
Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in weighted set partitions. Let $A_{n,k}(mathbf{t})$ denote the total weight of partitions o
A chordless cycle, or equivalently a hole, in a graph $G$ is an induced subgraph of $G$ which is a cycle of length at least $4$. We prove that the ErdH{o}s-Posa property holds for chordless cycles, which resolves the major open question concerning th
We introduce a new concept of s-recollements of extriangulated categories, which generalizes recollements of abelian categories, recollements of triangulated categories, as well as recollements of extriangulated categories. Moreover, some basic prope
The hypercontractive inequality on the discrete cube plays a crucial role in many fundamental results in the Analysis of Boolean functions, such as the KKL theorem, Friedguts junta theorem and the invariance principle. In these results the cube is eq
In this paper, we give the spectrum of a matrix by using the quotient matrix, then we apply this result to various matrices associated to a graph and a digraph, including adjacency matrix, (signless) Laplacian matrix, distance matrix, distance (signl