ﻻ يوجد ملخص باللغة العربية
We examine mathematical questions around angle (or phase) operator associated with a number operator through a short list of basic requirements. We implement three methods of construction of quantum angle. The first one is based on operator theory and parallels the definition of angle for the upper half-circle through its cosine and completed by a sign inversion. The two other methods are integral quantization generalizing in a certain sense the Berezin-Klauder approaches. One method pertains to Weyl-Heisenberg integral quantization of the plane viewed as the phase space of the motion on the line. It depends on a family of weight functions on the plane. The third method rests upon coherent state quantization of the cylinder viewed as the phase space of the motion on the circle. The construction of these coherent states depends on a family of probability distributions on the line.
We import the tools of Morse theory to study quantum adiabatic evolution, the core mechanism in adiabatic quantum computations (AQC). AQC is computationally equivalent to the (pre-eminent paradigm) of the Gate model but less error-prone, so it is ide
We introduce several notions of random positive operator valued measures (POVMs), and we prove that some of them are equivalent. We then study statistical properties of the effect operators for the canonical examples, obtaining limiting eigenvalue di
Linear system games are a generalization of Mermins magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solu
Standard projective measurements represent a subset of all possible measurements in quantum physics, defined by positive-operator-valued measures. We study what quantum measurements are projective simulable, that is, can be simulated by using project
By virtue of the integration method within P-ordered product of operators and the property of entangled state representation, we reveal new physical interpretation of the generalized two-mode squeezing operator (GTSO), and find it be decomposed as th