ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical interpretation of generalized two-mode squeezing operator revealed by virtue of the transformation of entangled state representation

100   0   0.0 ( 0 )
 نشر من قبل Xubing Tang Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By virtue of the integration method within P-ordered product of operators and the property of entangled state representation, we reveal new physical interpretation of the generalized two-mode squeezing operator (GTSO), and find it be decomposed as the product of free-space propagation operator, single-mode and two-mode squeezing operators, as well as thin lens transformation operator. This docomposition is useful to design of opticl devices for generating various squeezed states of light. Transformation of entangled state representation induced by GTSO is emphasized.



قيم البحث

اقرأ أيضاً

107 - Elena R. Loubenets 2019
We formulate and prove the main properties of the generalized Gell-Mann representation for traceless qudit observables with eigenvalues in $[-1,1]$ and analyze via this representation violation of the CHSH inequality by a general two-qudit state. For the maximal value of the CHSH expectation in a two-qudit state with an arbitrary qudit dimension $dgeq2$, this allows us to find two new bounds, lower and upper, expressed via the spectral properties of the correlation matrix for a two-qudit state. We have not yet been able to specify if the new upper bound improves the Tsirelson upper bound for each two-qudit state. However, this is the case for all two-qubit states, where the new lower bound and the new upper bound coincide and reduce to the precise two-qubit CHSH result of Horodeckis, and also, for the Greenberger-Horne-Zeilinger (GHZ) state with an odd $dgeq2,$ where the new upper bound is less than the upper bound of Tsirelson. Moreover, we explicitly find the correlation matrix for the two-qudit GHZ state and prove that, for this state, the new upper bound is attained for each dimension $dgeq2$ and this specifies the following new result: for the two-qudit GHZ state, the maximum of the CHSH expectation over traceless qudit observables with eigenvalues in $[-1,1]$ is equal to $2sqrt{2}$ if $dgeq2$ is even and to $frac{2(d-1)}{d}sqrt{2}$ if $d>2$ is odd.
We theoretically investigate the implementation of the two-mode squeezing operator in circuit quantum electrodynamics. Inspired by a previous scheme for optical cavities [Phys. Rev. A $textbf{73}$, 043803(2006)], we employ a superconducting qubit cou pled to two nondegenerate quantum modes and use a driving field on the qubit to adequately control the resonator-qubit interaction. Based on the generation of two-mode squeezed vacuum states, firstly we analyze the validity of our model in the ideal situation and then we investigate the influence of the dissipation mechanisms on the generation of the two-mode squeezing operation, namely the qubit and resonator mode decays and qubit dephasing. We show that our scheme allows the generation of highly squeezed states even with the state-of-the-art parameters, leading to a theoretical prediction of more than 10 dB of two-mode squeezing. Furthermore, our protocol is able to squeeze an arbitrary initial state of the resonators, which makes our scheme attractive for future applications in continuous-variable quantum information processing and quantum metrology in the realm of circuit quantum electrodynamics.
278 - Elie Wolfe , S.F. Yelin 2014
We discuss the possibility of generating spin squeezed states by means of driven superradiance, analytically affirming and broadening the finding in [Phys. Rev. Lett. 110, 080502 (2013)]. In an earlier paper [Phys. Rev. Lett. 112, 140402 (2014)] the authors determined that spontaneous purely-dissipative Dicke model superradiance failed to generate any entanglement over the course of the systems time evolution. In this article we show that by adding a driving field, however, the Dicke model system can be tuned to evolve toward an entangled steady state. We discuss how to optimize the driving frequency to maximize the entanglement. We show that the resulting entanglement is fairly strong, in that it leads to spin squeezing.
Recently, Gaiotto and Rapcak proposed a generalization of $W_N$ algebra by considering the symmetry at the corner of the brane intersection (corner vertex operator algebra). The algebra, denoted as $Y_{L,M,N}$, is characterized by three non-negative integers $L, M, N$. It has a manifest triality automorphism which interchanges $L, M, N$, and can be obtained as a reduction of $W_{1+infty}$ through a pit in the plane partition representation. Later, Prochazka and Rapcak proposed a representation of $Y_{L,M,N}$ in terms of $L+M+N$ free bosons through a generalization of Miura transformation, where they use the fractional power differential operators. In this paper, we derive a $q$-deformation of their Miura transformation. It gives the free field representation for $q$-deformed $Y_{L,M,N}$, which is obtained as a reduction of the quantum toroidal algebra. We find that the $q$-deformed version has a simpler structure than the original one because of the Miki duality in the quantum toroidal algebra. For instance, one can find a direct correspondence between the operators obtained by the Miura transformation and those of the quantum toroidal algebra. Furthermore, we can show that the screening charges of both the symmetries are identical.
For the two-dimensional Schrodinger equation, the general form of the point transformations such that the result can be interpreted as a Schrodinger equation with effective (i.e. position dependent) mass is studied. A wide class of such models with d ifferent forms of mass function is obtained in this way. Starting from the solvable two-dimensional model, the variety of solvable partner models with effective mass can be built. Several illustrating examples not amenable to the conventional separation of variables are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا