ﻻ يوجد ملخص باللغة العربية
We propose a new scheme for selecting pool states for the embedded Hidden Markov Model (HMM) Markov Chain Monte Carlo (MCMC) method. This new scheme allows the embedded HMM method to be used for efficient sampling in state space models where the state can be high-dimensional. Previously, embedded HMM methods were only applied to models with a one-dimensional state space. We demonstrate that using our proposed pool state selection scheme, an embedded HMM sampler can have similar performance to a well-tuned sampler that uses a combination of Particle Gibbs with Backward Sampling (PGBS) and Metropolis updates. The scaling to higher dimensions is made possible by selecting pool states locally near the current value of the state sequence. The proposed pool state selection scheme also allows each iteration of the embedded HMM sampler to take time linear in the number of the pool states, as opposed to quadratic as in the original embedded HMM sampler. We also consider a model with a multimodal posterior, and show how a technique we term mirroring can be used to efficiently move between the modes.
Non-linear state space models are a widely-used class of models for biological, economic, and physical processes. Fitting these models to observed data is a difficult inference problem that has no straightforward solution. We take a Bayesian approach
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs
Given data, deep generative models, such as variational autoencoders (VAE) and generative adversarial networks (GAN), train a lower dimensional latent representation of the data space. The linear Euclidean geometry of data space pulls back to a nonli
Generation of deviates from random graph models with non-trivial edge dependence is an increasingly important problem. Here, we introduce a method which allows perfect sampling from random graph models in exponential family form (exponential family r
In this paper we introduce a new sampling algorithm which has the potential to be adopted as a universal replacement to the Metropolis--Hastings algorithm. It is related to the slice sampler, and motivated by an algorithm which is applicable to discr