ترغب بنشر مسار تعليمي؟ اضغط هنا

A Perfect Sampling Method for Exponential Family Random Graph Models

144   0   0.0 ( 0 )
 نشر من قبل Carter Butts
 تاريخ النشر 2017
والبحث باللغة English
 تأليف Carter T. Butts




اسأل ChatGPT حول البحث

Generation of deviates from random graph models with non-trivial edge dependence is an increasingly important problem. Here, we introduce a method which allows perfect sampling from random graph models in exponential family form (exponential family random graph models), using a variant of Coupling From The Past. We illustrate the use of the method via an application to the Markov graphs, a family that has been the subject of considerable research. We also show how the method can be applied to a variant of the biased net models, which are not exponentially parameterized.



قيم البحث

اقرأ أيضاً

Exponential family Random Graph Models (ERGMs) can be viewed as expressing a probability distribution on graphs arising from the action of competing social forces that make ties more or less likely, depending on the state of the rest of the graph. Su ch forces often lead to a complex pattern of dependence among edges, with non-trivial large-scale structures emerging from relatively simple local mechanisms. While this provides a powerful tool for probing macro-micro connections, much remains to be understood about how local forces shape global outcomes. One simple question of this type is that of the conditions needed for social forces to stabilize a particular structure. We refer to this property as local stability and seek a general means of identifying the set of parameters under which a target graph is locally stable with respect to a set of alternatives. Here, we provide a complete characterization of the region of the parameter space inducing local stability, showing it to be the interior of a convex cone whose faces can be derived from the change-scores of the sufficient statistics vis-a-vis the alternative structures. As we show, local stability is a necessary but not sufficient condition for more general notions of stability, the latter of which can be explored more efficiently by using the ``stable cone within the parameter space as a starting point. In addition, we show how local stability can be used to determine whether a fitted model implies that an observed structure would be expected to arise primarily from the action of social forces, versus by merit of the model permitting a large number of high probability structures, of which the observed structure is one. We also use our approach to identify the dyads within a given structure that are the least stable, and hence predicted to have the highest probability of changing over time.
Exponential-family random graph models (ERGMs) provide a principled and flexible way to model and simulate features common in social networks, such as propensities for homophily, mutuality, and friend-of-a-friend triad closure, through choice of mode l terms (sufficient statistics). However, those ERGMs modeling the more complex features have, to date, been limited to binary data: presence or absence of ties. Thus, analysis of valued networks, such as those where counts, measurements, or ranks are observed, has necessitated dichotomizing them, losing information and introducing biases. In this work, we generalize ERGMs to valued networks. Focusing on modeling counts, we formulate an ERGM for networks whose ties are counts and discuss issues that arise when moving beyond the binary case. We introduce model terms that generalize and model common social network features for such data and apply these methods to a network dataset whose values are counts of interactions.
Rank-order relational data, in which each actor ranks the others according to some criterion, often arise from sociometric measurements of judgment (e.g., self-reported interpersonal interaction) or preference (e.g., relative liking). We propose a cl ass of exponential-family models for rank-order relational data and derive a new class of sufficient statistics for such data, which assume no more than within-subject ordinal properties. Application of MCMC MLE to this family allows us to estimate effects for a variety of plausible mechanisms governing rank structure in cross-sectional context, and to model the evolution of such structures over time. We apply this framework to model the evolution of relative liking judgments in an acquaintance process, and to model recall of relative volume of interpersonal interaction among members of a technology education program.
The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consis ts only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGMs expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.
Exponential-family random graph models (ERGMs) provide a principled way to model and simulate features common in human social networks, such as propensities for homophily and friend-of-a-friend triad closure. We show that, without adjustment, ERGMs p reserve density as network size increases. Density invariance is often not appropriate for social networks. We suggest a simple modification based on an offset which instead preserves the mean degree and accommodates changes in network composition asymptotically. We demonstrate that this approach allows ERGMs to be applied to the important situation of egocentrically sampled data. We analyze data from the National Health and Social Life Survey (NHSLS).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا