ترغب بنشر مسار تعليمي؟ اضغط هنا

Entity Embeddings with Conceptual Subspaces as a Basis for Plausible Reasoning

191   0   0.0 ( 0 )
 نشر من قبل Steven Schockaert
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conceptual spaces are geometric representations of conceptual knowledge, in which entities correspond to points, natural properties correspond to convex regions, and the dimensions of the space correspond to salient features. While conceptual spaces enable elegant models of various cognitive phenomena, the lack of automated methods for constructing such representations have so far limited their application in artificial intelligence. To address this issue, we propose a method which learns a vector-space embedding of entities from Wikipedia and constrains this embedding such that entities of the same semantic type are located in some lower-dimensional subspace. We experimentally demonstrate the usefulness of these subspaces as (approximate) conceptual space representations by showing, among others, that important features can be modelled as directions and that natural properties tend to correspond to convex regions.



قيم البحث

اقرأ أيضاً

Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search p rocess and current models typically perform short distance reasoning. However, the long-distance reasoning is also vital with the ability to connect the superficially unrelated entities. To the best of our knowledge, there lacks a general framework that approaches multi-hop reasoning in mixed long-short distance reasoning scenarios. We argue that there are two key issues for a general multi-hop reasoning model: i) where to go, and ii) when to stop. Therefore, we propose a general model which resolves the issues with three modules: 1) the local-global knowledge module to estimate the possible paths, 2) the differentiated action dropout module to explore a diverse set of paths, and 3) the adaptive stopping search module to avoid over searching. The comprehensive results on three datasets demonstrate the superiority of our model with significant improvements against baselines in both short and long distance reasoning scenarios.
290 - Lianbo Ma , Peng Sun , Zhiwei Lin 2019
Learning knowledge graph embedding from an existing knowledge graph is very important to knowledge graph completion. For a fact $(h,r,t)$ with the head entity $h$ having a relation $r$ with the tail entity $t$, the current approaches aim to learn low dimensional representations $(mathbf{h},mathbf{r},mathbf{t})$, each of which corresponds to the elements in $(h, r, t)$, respectively. As $(mathbf{h},mathbf{r},mathbf{t})$ is learned from the existing facts within a knowledge graph, these representations can not be used to detect unknown facts (if the entities or relations never occur in the knowledge graph). This paper proposes a new approach called TransW, aiming to go beyond the current work by composing knowledge graph embeddings using word embeddings. Given the fact that an entity or a relation contains one or more words (quite often), it is sensible to learn a mapping function from word embedding spaces to knowledge embedding spaces, which shows how entities are constructed using human words. More importantly, composing knowledge embeddings using word embeddings makes it possible to deal with the emerging new facts (either new entities or relations). Experimental results using three public datasets show the consistency and outperformance of the proposed TransW.
We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. Howev er, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.
Entity alignment which aims at linking entities with the same meaning from different knowledge graphs (KGs) is a vital step for knowledge fusion. Existing research focused on learning embeddings of entities by utilizing structural information of KGs for entity alignment. These methods can aggregate information from neighboring nodes but may also bring noise from neighbors. Most recently, several researchers attempted to compare neighboring nodes in pairs to enhance the entity alignment. However, they ignored the relations between entities which are also important for neighborhood matching. In addition, existing methods paid less attention to the positive interactions between the entity alignment and the relation alignment. To deal with these issues, we propose a novel Relation-aware Neighborhood Matching model named RNM for entity alignment. Specifically, we propose to utilize the neighborhood matching to enhance the entity alignment. Besides comparing neighbor nodes when matching neighborhood, we also try to explore useful information from the connected relations. Moreover, an iterative framework is designed to leverage the positive interactions between the entity alignment and the relation alignment in a semi-supervised manner. Experimental results on three real-world datasets demonstrate that the proposed model RNM performs better than state-of-the-art methods.
Background Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based on the exited knowledge in the K Gs. The path-based knowledge reasoning algorithm is one of the most important approaches to this task. This type of method has received great attention in recent years because of its high performance and interpretability. In fact, traditional methods such as path ranking algorithm (PRA) take the paths between an entity pair as atomic features. However, the medical KGs are very sparse, which makes it difficult to model effective semantic representation for extremely sparse path features. The sparsity in the medical KGs is mainly reflected in the long-tailed distribution of entities and paths. Previous methods merely consider the context structure in the paths of the knowledge graph and ignore the textual semantics of the symbols in the path. Therefore, their performance cannot be further improved due to the two aspects of entity sparseness and path sparseness. To address the above issues, this paper proposes two novel path-based reasoning methods to solve the sparsity issues of entity and path respectively, which adopts the textual semantic information of entities and paths for MedKGC. By using the pre-trained model BERT, combining the textual semantic representations of the entities and the relationships, we model the task of symbolic reasoning in the medical KG as a numerical computing issue in textual semantic representation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا