ﻻ يوجد ملخص باللغة العربية
We study the dynamical magnetic susceptibility of a strongly correlated electronic system in the presence of a time-dependent hopping field, deriving a generalized Bethe-Salpeter equation which is valid also out of equilibrium. Focusing on the single-orbital Hubbard model within the time-dependent Hartree-Fock approximation, we solve the equation in the non-equilibrium adiabatic regime, obtaining a closed expression for the transverse magnetic susceptibility. From this, we provide a rigorous definition of non-equilibrium (time-dependent) magnon frequencies and exchange parameters, expressed in terms of non-equilibrium single-electron Green functions and self-energies. In the particular case of equilibrium, we recover previously known results.
FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a nonmetal-metal. We carried out neutron scattering exper
Nonequilibrium dynamical mean-field theory (DMFT) solves correlated lattice models by obtaining their local correlation functions from an effective model consisting of a single impurity in a self-consistently determined bath. The recently developed m
Do electrons become ferromagnetic just because of their repulisve Coulomb interaction? Our calculations on the three-dimensional electron gas imply that itinerant ferromagnetim of delocalized electrons without lattice and band structure, the most bas
A dynamical generalisation of the nonlocal coherent-potential approximation is derived based upon the functional integral approach to the interacting electron problem. The free energy is proven to be variational with respect to the self-energy provid
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combin