ﻻ يوجد ملخص باللغة العربية
Thermal noise generally greatly exceeds quantum noise in optomechanical devices unless the mechanical frequency is very high or the thermodynamic temperature is very low. This paper addresses the design concept for a novel optomechanical device capable of ultrahigh quality factors in the audio frequency band with negligible thermal noise. The proposed system consists of a minimally supported millimeter scale pendulum mounted in a Double End-Mirror Sloshing (DEMS) cavity that is topologically equivalent to a Membrane-in-the-Middle (MIM) cavity. The radiation pressure inside the high-finesse cavity allows for high optical stiffness, cancellation of terms which lead to unwanted negative damping and suppression of quantum radiation pressure noise. We solve for the optical spring dynamics of the system using the Hamiltonian, find the noise spectral density and show that stable optical trapping is possible. We also assess various loss mechanisms, one of the most important being the acceleration loss due to the optical spring. We show that practical devices, starting from a centre-of-mass pendulum frequency of 0.1 Hz, could achieve a maximum quality factor of $10^{14}$ with optical spring stiffened frequency 1-10 kHz. Small resonators of mass 1 $mu$g or less could achieve a Q-factor of $10^{11}$ at a frequency of 100 kHz. Applications for such devices include white light cavities for improvement of gravitational wave detectors, or sensors able to operate near the quantum limit.
We present a joint theoretical and experimental characterization of thermo-refractive noise in high quality factor ($Q$), small mode volume ($V$) optical microcavities. Analogous to well-studied stability limits imposed by Brownian motion in macrosco
We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The sys- tem allows for wide-range, fast e
We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-di
We propose how to achieve synthetic $mathcal{PT}$ symmetry in optomechanics without using any active medium. We find that harnessing the Stokes process in such a system can lead to the emergence of exceptional point (EP), i.e., the coalescing of both
Optical metasurfaces open new avenues for precise wavefront control of light for integrated quantum technology. Here, we demonstrate a hybrid integrated quantum photonic system that is capable to entangle and disentangle two-photon spin states at a d