ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformable two-dimensional photonic crystal slab for cavity optomechanics

165   0   0.0 ( 0 )
 نشر من قبل Antoine Heidmann
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Antoni




اسأل ChatGPT حول البحث

We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects



قيم البحث

اقرأ أيضاً

We theoretically study photon transmission and mechanical ground state cooling in a two-dimensional optomechanical system that is formed of a suspended graphene sheet on an one-dimensional optomechanical crystal. When the frequencies of graphene reso nator and nanobeam resonator(phononic mode of optomechanical crystal) are approximately the same, the $Lambda$-type degenerate four-level system of two-dimensional optomechanics shows two-color optomechanically-induced transparency , and the transparency window could be switched among probe signals absorption, transparency, and amplification. According to our calculations, the graphene resonator could also effectively assist the ground state cooling of large damping nanobeam resonator in two-dimensional optomechanics.
Color centers in diamond are promising spin qubits for quantum computing and quantum networking. In photon-mediated entanglement distribution schemes, the efficiency of the optical interface ultimately determines the scalability of such systems. Nano -scale optical cavities coupled to emitters constitute a robust spin-photon interface that can increase spontaneous emission rates and photon extraction efficiencies. In this work, we introduce the fabrication of 2D photonic crystal slab nanocavities with high quality factors and cubic wavelength mode volumes -- directly in bulk diamond. This planar platform offers scalability and considerably expands the toolkit for classical and quantum nanophotonics in diamond.
We point out that the polarization state of radiation from a photonic crystal slab is strongly constrained by the direct non-resonant scattering process. The phase difference between the two linearly-polarized components in the far field can be predi cted analytically and is largely independent of the periodic pattern. We verify the prediction with full-field electromagnetic simulations.
We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The sys- tem allows for wide-range, fast e lectrical tuning of the optical nanocavity resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave the way for a new class of micro-sensors utilizing optomechanical back-action for thermal noise reduction and low-noise optical read-out.
84 - Longfei Li , Jianlan Xie , 2019
In this paper, a non-Hermitian two-dimensional photonic crystal flat lens is proposed. The negative refraction of the second band of photonic crystal is utilized to realize super-resolution imaging of the point source. Based on the principles of non- Hermitian systems, a negative imaginary part is introduced into the imaging frequency, in which case the imaging intensity and resolution are improved. The results indicate that the non-Hermitian system provides a new method to improve the imaging performance of the photonic crystal lens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا