ﻻ يوجد ملخص باللغة العربية
H2S is converted under ultrahigh pressure (> 110 GPa) to a metallic phase that becomes superconducting with a record Tc of 200 K. It has been proposed that the superconducting phase is body-centered cubic H3S ( Im3m , a = 3.089 {AA}) resulting from a decomposition reaction 3H2S --> 2H3S + S. The analogy of H2S and H2O leads us to a very different conclusion. The well-known dissociation of water into H3O+ and OH- increases by orders of magnitude under pressure. An equivalent behavior of H2S is anticipated under pressure with the dissociation, 2H2S --> H3S+ + SH- forming a perovskite structure (SH-)(H3S+), which consists of corner-sharing SH6 octahedra with SH- at each A-site (i.e., the center of each S8 cube). Our DFT calculations show that the perovskite (SH-)(H3S+) is thermodynamically more stable than the Im3m structure of H3S, and suggest that the A-site H atoms are most likely fluxional even at Tc.
This article reports the experimentally clarified crystal structure of a recently discovered sulfur hydride in high temperature superconducting phase which has the highest critical temperature Tc over 200 K which has been ever reported. For understan
We report the temperature dependence of the upper critical fields $mu_0H_{c2}(T)$ of the high temperature superconductor H$_3$S under applied pressures of 155 and 160 GPa through the electrical resistance transition observed under DC and pulsed magne
Two single crystalline samples with the same nominal composition of Rb0.8Fe2Se2 prepared via slightly different precursor routes under the same thermal processing conditions were investigated at ambient and high pressures. One sample was found superc
In the present study, we investigate the thermodynamic properties of the Ba$_{x}$K$_{1-x}$BiO$_{3}$ (BKBO) superconductor in the under- ($x=0.5$) and over-doped ($x=0.7$) regime, within the framework of the Migdal-Eliashberg formalism. The analysis i
A recent experiment reported that robust superconductivity appears in NbTi alloys under ultrahigh pressures with an almost constant superconducting $T_c$ of ~19 K from 120 to 261.7 GPa [J. Guo et al., Adv. Mater. 31, 1807240 (2019)], which is very ra