ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting properties of under- and over-doped Ba$_{x}$K$_{1-x}$BiO$_{3}$ perovskite oxide

88   0   0.0 ( 0 )
 نشر من قبل Dominik Szcz\\c{e}\\'sniak PhD
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present study, we investigate the thermodynamic properties of the Ba$_{x}$K$_{1-x}$BiO$_{3}$ (BKBO) superconductor in the under- ($x=0.5$) and over-doped ($x=0.7$) regime, within the framework of the Migdal-Eliashberg formalism. The analysis is conducted to verify that the electron-phonon pairing mechanism is responsible for the induction of the superconducting phase in the mentioned compound. In particular, we show that BKBO is characterized by the relatively high critical value of the Coulomb pseudopotential, which changes with doping level and does not follow the Morel-Anderson model. In what follows, the corresponding superconducting band gap size and related dimensionless ratio are estimated to increase with the doping, in agreement with the experimental predictions. Moreover the effective mass of electrons is found to take on high values in the entire doping and temperature region. Finally, the characteristic dimensionless ratios for the superconducting band gap, the critical magnetic field and the specific heat for the superconducting state are predicted to exceed the limits set within the Bardeen-Cooper-Schrieffer theory, suggesting pivotal role of the strong-coupling and retardation effects in the analyzed compound. Presented results supplement our previous investigations and account for the strong-coupling phonon-mediated character of the superconducting phase in BKBO at any doping level.



قيم البحث

اقرأ أيضاً

396 - Yunkyu Bang 2013
The electron band around $M$ point in (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ compound -- completely lifted above the Fermi level for $x > 0.7$ and hence has no Fermi Surface (FS) -- can still form an isotropic s-wave gap ($Delta_e$) and it is the main pairing resource generating an s-wave gap ($Delta_h$) with an opposite sign on the hole pocket around $Gamma$ point. The electron band developing the SC order parameter $Delta_e$ but having no FS displays a {it shadow gap} feature which will be easily detected by various experimental probes such as angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscope (STM). Finally, the formation of the nodal gap $Delta_{nodal}$ with $A_{1g}$ symmetry on the other hole pocket with a larger FS is stabilized due to the balance of the interband pairing interactions from the main hole band gap $Delta_h=+Delta$ and the hidden electron band gap $Delta_e = -Delta$.
The effect of hydrostatic pressure and partial Na substitution on the normal-state properties and the superconducting transition temperature ($T_c$) of K$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals were investigated. It was found that a partial Na subs titution leads to a deviation from the standard $T^2$ Fermi-liquid behavior in the temperature dependence of the normal-state resistivity. It was demonstrated that non-Fermi liquid like behavior of the resistivity for K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ and some KFe$_2$As$_2$ samples can be explained by disorder effect in the multiband system with rather different quasiparticle effective masses. Concerning the superconducting state our data support the presence of a shallow minimum around 2 GPa in the pressure dependence of $T_c$ for stoichiometric KFe$_2$As$_2$. The analysis of $T_c$ in the K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ at pressures below 1.5 GPa showed, that the reduction of $T_c$ with Na substitution follows the Abrikosov-Gorkov law with the critical temperature $T_{c0}$ of the clean system (without pair-breaking) which linearly depends on the pressure. Our observations, also, suggest that $T_c$ of K$_{1-x}$Na$_x$Fe$_2$As$_2$ is nearly independent of the lattice compression produced by the Na substitution. Further, we theoretically analyzed the behavior of the band structure under pressure within the generalized gradient approximation (GGA). A qualitative agreement between the calculated and the recently in de Haas-van Alphen experiments [T. Terashima et al., Phys.Rev.B89, 134520(2014)] measured pressure dependencies of the Fermi-surface cross-sections has been found. These calculations, also, indicate that the observed minimum around 2~GPa in the pressure dependence of $T_c$ may occur without a change of the pairing symmetry.
The precise momentum dependence of the superconducting gap in the iron-arsenide superconductor with Tc = 32K (BKFA) was determined from angle-resolved photoemission spectroscopy (ARPES) via fitting the distribution of the quasiparticle density to a m odel. The model incorporates finite lifetime and experimental resolution effects, as well as accounts for peculiarities of BKFA electronic structure. We have found that the value of the superconducting gap is practically the same for the inner Gamma-barrel, X-pocket, and blade-pocket, and equals 9 meV, while the gap on the outer Gamma-barrel is estimated to be less than 4 meV, resulting in 2Delta/kT_c=6.8 for the large gap, and 2Delta/kT_c<3 for the small gap. A large (77 pm 3%) non-superconducting component in the photoemission signal is observed below T_c. Details of gap extraction from ARPES data are discussed in Appendix.
Resistivity, Hall effect and magnetoresistance have been investigated systematically on single crystals of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ ranging from undoped to optimally doped regions. A systematic evolution of the quasiparticle scattering has been ob served. It is found that the resistivity in the normal state of Ba$_{1-x}$K$_x$Fe$_2$As$_2$ is insensitive to the potassium doping concentration, which is very different from the electron doped counterpart Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$, where the resistivity at 300 K reduces to half value of the undoped one when the system is optimally doped. In stark contrast, the Hall coefficient R$_H$ changes suddenly from a negative value in the undoped sample to a positive one with slight K-doping, and it keeps lowering with further doping. We interpret this dichotomy due to the asymmetric scattering rate in the hole and the electron pockets with much higher mobility of the latter. The magnetoresistivity shows also a non-monotonic doping dependence indicating an anomalous feature at about 80 K to 100 K, even in the optimally doped sample, which is associated with a possible pseudogap feature. In the low temperature region, it seems that the resistivity has the similar values when superconductivity sets in disregarding the different T$_c$ values, which indicates a novel mechanism of the superconductivity. A linear feature of resistivity $rho_{ab}$ vs. $T$ was observed just above $T_c$ for the optimally doped sample, suggesting a quantum criticality.
We present the first study of thermal conductivity in superconducting SrTi$_{1-x}$Nb$_{x}$O$_{3}$, sufficiently doped to be near its maximum critical temperature. The bulk critical temperature, determined by the jump in specific heat, occurs at a sig nificantly lower temperature than the resistive T$_{c}$. Thermal conductivity, dominated by the electron contribution, deviates from its normal-state magnitude at bulk T$_{c}$, following a Bardeen-Rickayzen-Tewordt (BRT) behavior, expected for thermal transport by Bogoliubov excitations. Absence of a T-linear term at very low temperatures rules out the presence of nodal quasi-particles. On the other hand, the field dependence of thermal conductivity points to the existence of at least two distinct superconducting gaps. We conclude that optimally-doped strontium titanate is a multigap nodeless superconductor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا