ترغب بنشر مسار تعليمي؟ اضغط هنا

Configuration Dependence of Band Gap Narrowing and Localization in Dilute GaAs_{1-x} Bi_x Alloys

122   0   0.0 ( 0 )
 نشر من قبل Stephan Koch
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anion substitution with bismuth (Bi) in III-V semiconductors is an effective method for experimental engineering of the band gap Eg at low Bi concentrations, in particular in gallium arsenide (GaAs). The inverse Bi-concentration dependence of Eg has been found to be linear at low concentrations x and dominated by a valence band-defect level anticrossing between As and Bi occupied p levels. This dependence breaks down at high concentrations where empirical models accounting only for the As-Bi interaction are not applicable. Predictive models for the valence band hybridization require a first-principle understanding which can be obtained by density functional theory with the main challenges being the proper description of Eg and the spin-orbit coupling. By using an efficient method to include these effects, it is shown here that at high concentrations Eg is modified mainly by a Bi-Bi p orbital interaction and by the large Bi atom-induced strain. This points to the role of different atomic configurations obtained by varying the experimental growth conditions in engineering arsenide band gaps, in particular for telecommunication laser technology.



قيم البحث

اقرأ أيضاً

For powder samples of CuAl$_{1-x}$Fe$_x$O$_2$ ($x =$ 0, 0.01, 0.05, and 0.1), measured optical properties are compared with model simulations and phonon spectra are compared with simulations based on weighted dynamical matrix approach.
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic material. As regulated by Shockley-Queisser theory, a formidable materials science challenge for the next level improvement requires furthe r band gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band gap photovoltage. Herein, by applying controllable hydrostatic pressure we have achieved unprecedented simultaneous enhancement in both band gap narrowing and carrier lifetime prolongation (up to 70~100% increase) under mild pressures at ~0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route towards a further boost in their photovoltaic performance.
108 - M. J. Winiarski 2015
Structural and electronic properties of hypothetical zinc blende Tl(x)Ga(1-x)N alloys have been investigated from first principles. The structural relaxation, preformed within the LDA approach, leads to a linear dependence of the lattice parameter a on the Tl content x. In turn, band structures obtained by MBJLDA calculations are significantly different from the corresponding LDA results. The decrease of the band-gap in Tl-doped GaN materials (for x<0.25) is predicted to be a linear function of x, i.e. 0.08 eV per atomic % of thallium. The semimetallic character is expected for materials with x>0.5. The obtained spin-orbit coupling driven splitting between the heavy-hole and split-off band at the Gamma point of the Brillouin zone in Tl(x)Ga(1-x)N systems is significantly weaker when compared to that of Tl-doped InN materials.
Electronic structure of zinc blende AlN(1-x)$Px alloy has been calculated from first principles. Structural optimisation has been performed within the framework of LDA and the band-gaps calculated with the modified Becke-Jonson (MBJLDA) method. Two a pproaches have been examined: the virtual crystal approximation (VCA) and the supercell-based calculations (SC). The composition dependence of the lattice parameter obtained from the SC obeys Vegards law whereas the volume optimisation in the VCA leads to an anomalous bowing of the lattice constant. A strong correlation between the band-gaps and the structural parameter in the VCA method has been observed. On the other hand, in the SC method the supercell size and atoms arrangement (clustered vs. uniform) appear to have a great influence on the computed band-gaps. In particular, an anomalously big band-gap bowing has been found in the case of a clustered configuration with relaxed geometry. Based on the performed tests and obtained results some general features of MBJLDA are discussed and its performance for similar systems predicted.
There is evidence that interface recombination in Cu2ZnSnS4 solar cells contributes to the open-circuit voltage deficit. Our hybrid density functional theory calculations suggest that electron-hole recombination at the Cu2ZnSnS4/CdS interface is caus ed by a deeper conduction band that slows electron extraction. In contrast, the bandgap is not narrowed for the Cu2ZnSnSe4/CdS interface, consistent with a lower open-circuit voltage deficit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا