ﻻ يوجد ملخص باللغة العربية
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic material. As regulated by Shockley-Queisser theory, a formidable materials science challenge for the next level improvement requires further band gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band gap photovoltage. Herein, by applying controllable hydrostatic pressure we have achieved unprecedented simultaneous enhancement in both band gap narrowing and carrier lifetime prolongation (up to 70~100% increase) under mild pressures at ~0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route towards a further boost in their photovoltaic performance.
Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementar
For a class of 2D hybrid organic-inorganic perovskite semiconductors based on $pi$-conjugated organic cations, we predict quantitatively how varying the organic and inorganic component allows control over the nature, energy and localization of carrie
The unprecedented structural flexibility and diversity of inorganic frameworks of layered hybrid halide perovskites (LHHPs) rise up a wide range of useful optoelectronic properties thus predetermining the extraordinary high interest to this family of
Behaving like atomically-precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered HOIPs have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These stron
The hybrid organic inorganic perovskites (HOIPs) have attracted much attention for their potential applications as novel optoelectronic devices. Remarkably, the Rashba band splitting, together with specific spin orientations in k space (i.e., spin te