ترغب بنشر مسار تعليمي؟ اضغط هنا

Holomorphic extensions associated with series expansions

92   0   0.0 ( 0 )
 نشر من قبل Enrico De Micheli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the holomorphic extension associated with power series, i.e., the analytic continuation from the unit disk to the cut-plane $mathbb{C} setminus [1,+infty)$. Analogous results are obtained also in the study of trigonometric series: we establish conditions on the series coefficients which are sufficient to guarantee the series to have a KMS analytic structure. In the case of power series we show the connection between the unique (Carlsonian) interpolation of the coefficients of the series and the Laplace transform of a probability distribution. Finally, we outline a procedure which allows us to obtain a numerical approximation of the jump function across the cut starting from a finite number of power series coefficients. By using the same methodology, the thermal Green functions at real time can be numerically approximated from the knowledge of a finite number of noisy Fourier coefficients in the expansion of the thermal Green functions along the imaginary axis of the complex time plane.



قيم البحث

اقرأ أيضاً

396 - Yacine Ikhlef , John Cardy 2009
We define parafermionic observables in various lattice loop models, including examples where no Kramers-Wannier duality holds. For a particular rhombic embedding of the lattice in the plane and a value of the parafermionic spin these variables are di scretely holomorphic (they satisfy a lattice version of the Cauchy-Riemann equations) as long as the Boltzmann weights satisfy certain linear constraints. In the cases considered, the weights then also satisfy the critical Yang-Baxter equations, with the spectral parameter being related linearly to the angle of the elementary rhombus.
157 - Yacine Ikhlef 2012
In two-dimensional statistical models possessing a discretely holomorphic parafermion, we introduce a modified discrete Cauchy-Riemann equation on the boundary of the domain, and we show that the solution of this equation yields integrable boundary B oltzmann weights. This approach is applied to (i) the square-lattice O(n) loop model, where the exact locations of the special and ordinary transitions are recovered, and (ii) the Fateev-Zamolodchikov $Z_N$ spin model, where a new rotation-invariant, integrable boundary condition is discovered for generic $N$.
141 - K. Gorska , K. A. Penson 2012
We present a method of generation of exact and explicit forms of one-sided, heavy-tailed Levy stable probability distributions g_{alpha}(x), 0 leq x < infty, 0 < alpha < 1. We demonstrate that the knowledge of one such a distribution g_{alpha}(x) suf fices to obtain exactly g_{alpha^{p}}(x), p=2, 3,... Similarly, from known g_{alpha}(x) and g_{beta}(x), 0 < alpha, beta < 1, we obtain g_{alpha beta}(x). The method is based on the construction of the integral operator, called Levy transform, which implements the above operations. For alpha rational, alpha = l/k with l < k, we reproduce in this manner many of the recently obtained exact results for g_{l/k}(x). This approach can be also recast as an application of the Efros theorem for generalized Laplace convolutions. It relies solely on efficient definite integration.
We study the open version of the su$(m|n)$ supersymmetric Haldane-Shastry spin chain associated to the $BC_N$ extended root system. We first evaluate the models partition function by modding out the dynamical degrees of freedom of the su$(m|n)$ super symmetric spin Sutherland model of $BC_N$ type, whose spectrum we fully determine. We then construct a generalized partition function depending polynomially on two sets of variables, which yields the standard one when evaluated at a suitable point. We show that this generalized partition function can be written in terms of two variants of the classical skew super Schur polynomials, which admit a combinatorial definition in terms of a new type of skew Young tableaux and border strips (or, equivalently, extended motifs). In this way we derive a remarkable description of the spectrum in terms of this new class of extended motifs, reminiscent of the analogous one for the closed Haldane-Shastry chain. We provide several concretes examples of this description, and in particular study in detail the su$(1|1)$ model finding an analytic expression for its Helmholtz free energy in the thermodynamic limit.
We construct lattice parafermions - local products of order and disorder operators - in nearest-neighbor Z(N) models on regular isotropic planar lattices, and show that they are discretely holomorphic, that is they satisfy discrete Cauchy-Riemann equ ations, precisely at the critical Fateev-Zamolodchikov (FZ) integrable points. We generalize our analysis to models with anisotropic interactions, showing that, as long as the lattice is correctly embedded in the plane, such discretely holomorphic parafermions exist for particular values of the couplings which we identify as the anisotropic FZ points. These results extend to more general inhomogeneous lattice models as long as the covering lattice admits a rhombic embedding in the plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا