ترغب بنشر مسار تعليمي؟ اضغط هنا

Variance Asymptotics and Scaling Limits for Random Polytopes

137   0   0.0 ( 0 )
 نشر من قبل Pierre Calka
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Pierre Calka




اسأل ChatGPT حول البحث

Let K be a convex set in R d and let K $lambda$ be the convex hull of a homogeneous Poisson point process P $lambda$ of intensity $lambda$ on K. When K is a simple polytope, we establish scaling limits as $lambda$ $rightarrow$ $infty$ for the boundary of K $lambda$ in a vicinity of a vertex of K and we give variance asymptotics for the volume and k-face functional of K $lambda$, k $in$ {0, 1, ..., d -- 1}, resolving an open question posed in [18]. The scaling limit of the boundary of K $lambda$ and the variance asymptotics are described in terms of a germ-grain model consisting of cone-like grains pinned to the extreme points of a Poisson point process on R d--1 $times$ R having intensity $sqrt$ de dh dhdv.



قيم البحث

اقرأ أيضاً

Let $K_n$ be the convex hull of i.i.d. random variables distributed according to the standard normal distribution on $R^d$. We establish variance asymptotics as $n to infty$ for the re-scaled intrinsic volumes and $k$-face functionals of $K_n$, $k in {0,1,...,d-1}$, resolving an open problem. Variance asymptotics are given in terms of functionals of germ-grain models having parabolic grains with apices at a Poisson point process on $R^{d-1} times R$ with intensity $e^h dh dv$. The scaling limit of the boundary of $K_n$ as $n to infty$ converges to a festoon of parabolic surfaces, coinciding with that featuring in the geometric construction of the zero viscosity solution to Burgers equation with random input.
Let $K subset R^d$ be a smooth convex set and let $P_la$ be a Poisson point process on $R^d$ of intensity $la$. The convex hull of $P_la cap K$ is a random convex polytope $K_la$. As $la to infty$, we show that the variance of the number of $k$-dimen sional faces of $K_la$, when properly scaled, converges to a scalar multiple of the affine surface area of $K$. Similar asymptotics hold for the variance of the number of $k$-dimensional faces for the convex hull of a binomial process in $K$.
68 - Julian Grote 2018
Fix a space dimension $dge 2$, parameters $alpha > -1$ and $beta ge 1$, and let $gamma_{d,alpha, beta}$ be the probability measure of an isotropic random vector in $mathbb{R}^d$ with density proportional to begin{align*} ||x||^alpha, expleft(-frac{|x |^beta}{beta}right), qquad xin mathbb{R}^d. end{align*} By $K_lambda$, we denote the Generalized Gamma Polytope arising as the random convex hull of a Poisson point process in $mathbb{R}^d$ with intensity measure $lambdagamma_{d,alpha,beta}$, $lambda>0$. We establish that the scaling limit of the boundary of $K_lambda$, as $lambda rightarrow infty$, is given by a universal `festoon of piecewise parabolic surfaces, independent of $alpha$ and $beta$. Moreover, we state a list of other large scale asymptotic results, including expectation and variance asymptotics, central limit theorems, concentration inequalities, Marcinkiewicz-Zygmund-type strong laws of large numbers, as well as moderate deviation principles for the intrinsic volumes and face numbers of $K_lambda$.
Schreiber and Yukich [Ann. Probab. 36 (2008) 363-396] establish an asymptotic representation for random convex polytope geometry in the unit ball $mathbb{B}^d, dgeq2$, in terms of the general theory of stabilizing functionals of Poisson point process es as well as in terms of generalized paraboloid growth processes. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via these growth processes we establish local functional limit theorems for the properly scaled radius-vector and support functions of convex polytopes generated by high-density Poisson samples. We show that direct methods lead to explicit asymptotic expressions for the fidis of the properly scaled radius-vector and support functions. Generalized paraboloid growth processes, coupled with general techniques of stabilization theory, yield Brownian sheet limits for the defect volume and mean width functionals. Finally we provide explicit variance asymptotics and central limit theorems for the k-face and intrinsic volume functionals.
It is proved that the distributions of scaling limits of Continuous Time Random Walks (CTRWs) solve integro-differential equations akin to Fokker-Planck Equations for diffusion processes. In contrast to previous such results, it is not assumed that t he underlying process has absolutely continuous laws. Moreover, governing equations in the backward variables are derived. Three examples of anomalous diffusion processes illustrate the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا