ترغب بنشر مسار تعليمي؟ اضغط هنا

Brownian limits, local limits and variance asymptotics for convex hulls in the ball

305   0   0.0 ( 0 )
 نشر من قبل Pierre Calka
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Schreiber and Yukich [Ann. Probab. 36 (2008) 363-396] establish an asymptotic representation for random convex polytope geometry in the unit ball $mathbb{B}^d, dgeq2$, in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of generalized paraboloid growth processes. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via these growth processes we establish local functional limit theorems for the properly scaled radius-vector and support functions of convex polytopes generated by high-density Poisson samples. We show that direct methods lead to explicit asymptotic expressions for the fidis of the properly scaled radius-vector and support functions. Generalized paraboloid growth processes, coupled with general techniques of stabilization theory, yield Brownian sheet limits for the defect volume and mean width functionals. Finally we provide explicit variance asymptotics and central limit theorems for the k-face and intrinsic volume functionals.



قيم البحث

اقرأ أيضاً

Let $K_n$ be the convex hull of i.i.d. random variables distributed according to the standard normal distribution on $R^d$. We establish variance asymptotics as $n to infty$ for the re-scaled intrinsic volumes and $k$-face functionals of $K_n$, $k in {0,1,...,d-1}$, resolving an open problem. Variance asymptotics are given in terms of functionals of germ-grain models having parabolic grains with apices at a Poisson point process on $R^{d-1} times R$ with intensity $e^h dh dv$. The scaling limit of the boundary of $K_n$ as $n to infty$ converges to a festoon of parabolic surfaces, coinciding with that featuring in the geometric construction of the zero viscosity solution to Burgers equation with random input.
136 - Pierre Calka 2016
Let K be a convex set in R d and let K $lambda$ be the convex hull of a homogeneous Poisson point process P $lambda$ of intensity $lambda$ on K. When K is a simple polytope, we establish scaling limits as $lambda$ $rightarrow$ $infty$ for the boundar y of K $lambda$ in a vicinity of a vertex of K and we give variance asymptotics for the volume and k-face functional of K $lambda$, k $in$ {0, 1, ..., d -- 1}, resolving an open question posed in [18]. The scaling limit of the boundary of K $lambda$ and the variance asymptotics are described in terms of a germ-grain model consisting of cone-like grains pinned to the extreme points of a Poisson point process on R d--1 $times$ R having intensity $sqrt$ de dh dhdv.
Let $K subset R^d$ be a smooth convex set and let $P_la$ be a Poisson point process on $R^d$ of intensity $la$. The convex hull of $P_la cap K$ is a random convex polytope $K_la$. As $la to infty$, we show that the variance of the number of $k$-dimen sional faces of $K_la$, when properly scaled, converges to a scalar multiple of the affine surface area of $K$. Similar asymptotics hold for the variance of the number of $k$-dimensional faces for the convex hull of a binomial process in $K$.
We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general beta siblings converge to Sine_beta, a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane. The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine_beta is continuous in the gap size and $beta$, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at beta=2.
Consider a set of $n$ vertices, where each vertex has a location in $mathbb{R}^d$ that is sampled uniformly from the unit cube in $mathbb{R}^d$, and a weight associated to it. Construct a random graph by placing edges independently for each vertex pa ir with a probability that is a function of the distance between the locations, and the vertex weights. Under appropriate integrability assumptions on the edge probabilities that imply sparseness of the model, after appropriately blowing up the locations, we prove that the local limit of this random graph sequence is the (countably) infinite random graph on $mathbb{R}^d$ with vertex locations given by a homogeneous Poisson point process, having weights which are i.i.d. copies of limiting vertex weights. Our setup covers many sparse geometric random graph models from the literature, including Geometric Inhomogeneous Random Graphs (GIRGs), Hyperbolic Random Graphs, Continuum Scale-Free Percolation and Weight-dependent Random Connection Models. We prove that the limiting degree distribution is mixed Poisson, and the typical degree sequence is uniformly integrable, and obtain convergence results on various measures of clustering in our graphs as a consequence of local convergence. Finally, as a by-product of our argument, we prove a doubly logarithmic lower bound on typical distances in this general setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا