ﻻ يوجد ملخص باللغة العربية
Radiotherapy can effectively kill malignant cells, but the doses required to cure cancer patients may inflict severe collateral damage to adjacent healthy tissues. Hyperthermia (HT) is a promising option to improve the outcome of radiation treatment (RT) and is increasingly applied in hospital. However, the synergistic effect of simultaneous thermoradiotherapy is not well understood yet, while its mathematical modelling is essential for treatment planning. To better understand this synergy, we propose a theoretical model in which the thermal enhancement ratio (TER) is explained by the fraction of cells being radiosensitised by the infliction of sublethal damage through mild HT. Further damage finally kills the cell or inhibits its proliferation in a non-reversible process. We suggest the TER to be proportional to the energy invested in the sensitisation, which is modelled as a simple rate process. Assuming protein denaturation as the main driver of HT-induced sublethal damage and considering the temperature dependence of the heat capacity of cellular proteins, the sensitisation rates were found to depend exponentially on temperature; in agreement with previous empirical observations. Our predictions well reproduce experimental data from in-vitro and in-vivo studies, explaining the thermal modulation of cellular radioresponse for simultaneous thermoradiotherapy.
Background: Experiments have reported low normal tissue toxicities during FLASH radiation, but the mechanism has not been elaborated. Several hypotheses have been proposed to explain the mechanism. The oxygen depletion hypothesis has been introduced
A novel energy landscape model, ELM, for proteins recently explained a collection of incoherent, elastic neutron scattering data from proteins. The ELM of proteins considers the elastic response of the proton and its environment to the energy and mom
Proteins from the kinesin-8 family promote microtubule (MT) depolymerization, a process thought to be important for the control of microtubule length in living cells. In addition to this MT shortening activity, kinesin 8s are motors that show plus-en
The human adaptive immune response is known to weaken in advanced age, resulting in increased severity of pathogen-born illness, poor vaccine efficacy, and a higher prevalence of cancer in the elderly. Age-related erosion of the T-cell compartment ha
Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing,