ﻻ يوجد ملخص باللغة العربية
We prove that after an arbitrarily small adjustment of edge lengths, the spectrum of a compact quantum graph with $delta$-type vertex conditions can be simple. We also show that the eigenfunctions, with the exception of those living entirely on a looping edge, can be made to be non-vanishing on all vertices of the graph. As an application of the above result, we establish that the secular manifold (also called determinant manifold) of a large family of graphs has exactly two smooth connected components.
We consider the spectral problem associated with the Klein-Gordon equation for unbounded electric potentials. If the spectrum of this problem is contained in two disjoint real intervals and the two inner boundary points are eigenvalues, we show that
We prove an analogue of the magnetic nodal theorem on quantum graphs: the number of zeros $phi$ of the $n$-th eigenfunction of the Schrodinger operator on a quantum graph is related to the stability of the $n$-th eigenvalue of the perturbation of the
We construct a distorted Fourier transformation associated with the multi-dimensional quantum walk. In order to avoid the complication of notations, almost all of our arguments are restricted to two dimensional quantum walks (2DQWs) without loss of g
We consider the time-independent scattering theory for time evolution operators of one-dimensional two-state quantum walks. The scattering matrix associated with the position-dependent quantum walk naturally appears in the asymptotic behavior at spat
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de